
P V - W A V E 7 . 5

SOLVEHELPING CUSTOMERS COMPLEX PROBLEMSSOLVE

U s e r ’ s G u i d e

Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.
2500 Wilcrest Drive Tour Europe Suite 1
Suite 200 33 place des Corolles Centennial Court
Houston, Texas 77042-2579 Cedex 07 East Hampstead Road
United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire
713-784-3131 FRANCE RG 12 1 YQ
800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM
(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700
http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748
e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.
7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor
Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho
Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102
+886-2-727-2255 +49-711-13287-0 JAPAN
(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760
e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769

e-mail: vda-sprt@vnij.co.jp
VIsual Numerics S.A. de C.V. Visual Numerics, Inc., Korea
Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.
Col. Juarez 136-1, Mapo-dong, Mapo-gu
Mexico, D.F. C.P. 06600 Seoul 121-050
Mexico Korea

© 1990-2001 by Visual Numerics, Inc. An unpublished work. All rights reserved. Printed in the USA.

Information contained in this documentation is subject to change without notice.

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademarks of Visual Numerics, Inc.
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems,
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compaq Computer Corporation; Tektronix 4510
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin
Enterprises; XWD — X Consortium. Other product names and companies mentioned herein may be the trademarks of their respective
owners.

IMPORTANT NOTICE: Use of this document is subject to the terms and conditions of a Visual Numerics Software License
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the
license agreement, you may not use this documentation and should promptly return the product for a full refund. Do not make illegal
copies of this documentation. No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law.

 i

Table of Contents

Preface vii

What’s in this Manual vii

Conventions Used in this Manual ix

Technical Support x

Chapter 1: Learning PV-WAVE 1
Using the Tutorial 1

Using Online Help 1

Using Manuals Online 3

The Printed Documentation Set 4

Using the Gallery 6

Using the Demo Files 8

Chapter 2: Getting Started: UNIX and OpenVMS 9
Starting PV-WAVE 9

Stopping PV-WAVE 11

Entering Commands at the Command Line 13

Using Command Recall 16

Getting Information about the Current Session 16

Saving and Restoring Sessions 16

Printing Your Work 18

Chapter 3: Getting Started: Windows 23
Starting PV-WAVE 23

Summary of PV-WAVE Startup Commands 24

Stopping PV-WAVE 25

ii PV-WAVE User’s Guide

Executing a Command (Batch) File at Startup 27

DDE Runtime Mode — wavedde 27

Windows Used by PV-WAVE 28

Entering Commands at the Command Line 30

Function Keys 34

Getting Information about the Current Session 35

Saving and Restoring PV-WAVE Sessions 35

Printing Your Work 37

Using the Clipboard 40

Chapter 4: Displaying 2D Data 41
Summary of 2D Plotting and General Graphics Routines 41

Customizing Plots with Keyword Parameters 42

Three Graphics Coordinate Systems 43

Drawing X Versus Y Plots 45

Getting Input from the Cursor 78

Chapter 5: Displaying 3D Data 81
Differences Between CONTOUR and CONTOUR2 82

Drawing Contour Plots with the CONTOUR Procedure 82

Drawing a Surface 96

Drawing Three-dimensional Graphics 99

3D Transformations with 2D Procedures 110

Drawing Shaded Surfaces 115

Chapter 6: Displaying Images 119
What is an Image? 119

Image Display Routines: TV and TVSCL 120

Image Magnification and Reduction 123

 iii

Retrieving Information from Images 124

Using Color with Images 125

Gray Level Transformations 132

Image Smoothing 138

Image Sharpening 139

Frequency Domain Techniques 141

Geometric Transformations 146

Mathematical Morphology 151

Chapter 7: Rendering Techniques 153
Hardware Rendering 153

Software Rendering 163

Demonstration Programs 164

The Basic Rendering Process 171

Importing and Generating Data for Rendering 172

Manipulating and Converting Data 176

Setting Up Data for Viewing 179

Rendering with Standard Techniques 179

Ray-tracing 180

Displaying Rendered Images 200

Chapter 8: Working with Date/Time Data 201
Introduction to Date/Time Data 201

The Date/Time Structure 204

Reading in Your Date/Time Data 206

Converting Your Data into Date/Time Data 207

Generating Date/Time Data 211

Manipulating Date/Time Data 212

Creating Plots with Date/Time Data 217

iv PV-WAVE User’s Guide

Writing Date/Time Data to a File 228

Miscellaneous Date/Time Utility Functions 230

Chapter 9: Creating and Querying Tables 235
What are the Table Functions? 235

Table Functions and Structured Query Language (SQL) 236

A Quick Overview of the Table Functions 236

Creating a Table 238

Querying a Table 241

Using Date/Time Data in Tables 251

Formatting and Printing Tables 254

Plotting Table Data 255

Tables and Structures 256

Returning Indices of a Subsetted Table 257

Other Methods of Subsetting and Sorting Variables 258

Chapter 10: Using Fonts 259
Software vs. Hardware Fonts: How to Choose 259

Using Software Fonts 261

Using Hardware Fonts 264

Text Formatting Examples 267

Chapter 11: Using Color in Graphics Windows 273
Understanding Color Systems 273

Using Color to Enhance Visual Data Analysis 277

Device-specific Methods for Using Color 291

Summary of Color Table Procedures 292

Chapter 12: Mapping with PV-WAVE 295

 v

Introduction 296

Using Map Projections and Datasets 297

Creating and Customizing Maps 300

How to Optimize Your Mapping Application 311

Accessing Other Map Datasets 315

Defining Your Own Projections 318

Creating Interactive Map Applications 319

Chapter 13: PV-WAVE on the World Wide Web 321
Standard Library Web-Enabling Routines 321

PV-WAVE as a Helper Application 322

Using PV-WAVE Remotely with CGI 323

User’s Guide Index 1

vi PV-WAVE User’s Guide

vii

PREFACE

Preface
Welcome to PV-WAVE! PV-WAVE is a comprehensive software environment that
integrates state-of-the-art graphical and numerical analysis techniques into a
system that is easy to use, easy to extend, easy to apply, and easy to learn.
PV-WAVE gives you the tools you need to find solutions to, and build applications
for, complex technical problems.

This manual explains how to use PV-WAVE to perform many kinds of visual data
analysis (VDA) — 2D and 3D plotting, image processing, volume rendering, and
mapping techniques are discussed. In addition, this manual discusses how to
manage your PV-WAVE session, use color to enhance displayed data, create tables
of data, and incorporate date/time data into your plots.

What’s in this Manual
This manual covers the following topics:

• Chapter 1, Learning PV-WAVE — Provides an overview of the topics dis-
cussed in this manual.

• Chapter 2, Getting Started: UNIX and OpenVMS — Discusses some of
PV-WAVE’s basic operations under UNIX and OpenVMS, such as starting
and stopping the software, using the online Help and documentation systems,
journaling, and saving and restoring sessions.

• Chapter 3, Getting Started: Windows — Discusses some of PV-WAVE’s
basic operations under Windows.

• Chapter 4, Displaying 2D Data — Covers the basics of X versus Y plotting.

viii Preface PV-WAVE User’s Guide

• Chapter 5, Displaying 3D Data — Describes the basics of contour and surface
plotting.

• Chapter 6, Displaying Images — Describes routines used for displaying
images and image processing.

• Chapter 7, Rendering Techniques — Describes the routines and techniques
used to render volumes.

• Chapter 8, Working with Date/Time Data — Explains how to create plots
with a Date/Time axis.

• Chapter 9, Creating and Querying Tables — Discusses how to create and
subset tables using SQL-like functions.

• Chapter 10, Using Fonts — Discusses how to use and format software, or
vector-drawn, fonts. This chapter also discusses the difference between soft-
ware and hardware fonts and how to choose between them.

• Chapter 11, Using Color in Graphics Windows — Discusses color systems
and introduces the routines that control color tables and plot colors.

• Chapter 12, Mapping with PV-WAVE — Discusses mapping procedures and
optimization.

• Chapter 13, PV-WAVE on the World Wide Web — Describes features that
allow you to process and present data across the Internet or your intranet.

• User’s Guide Index — A subject index with hypertext links to information in
this manual.

Conventions Used in this Manual ix

Conventions Used in this Manual
You will find the following conventions used throughout this manual:

• Code examples appear in this typeface. For example:

PLOT, temp, s02, Title = ’Air Quality’

• Code comments are shown in this typeface, immediately below the commands
they describe. For example:

PLOT, temp, s02, Title = ’Air Quality’

; This command plots air temperature data vs. sulphur
; dioxide concentration.

• Variables are shown in lowercase italics (myvar), function and procedure
names are shown in uppercase (XYOUTS), keywords are shown in mixed case
italic (XTitle), and system variables are shown in regular mixed case type (!Ver-
sion). For better readability, all GUI development routines are shown in mixed
case (WwMainMenu).

• A $ at the end of a line of PV-WAVE code indicates that the current statement
is continued on the following line. By convention, use of the continuation char-
acter ($) in this document reflects its syntactically correct use in PV-WAVE.
This means, for instance, that strings are never split onto two lines without the
addition of the string concatenation operator (+). For example, the following
lines would produce an error if entered literally in PV-WAVE.

WAVE> PLOT, x, y, Title = ’Average $
Air Temperatures by Two-Hour Periods’

; Note that the string is split onto two lines; an error
; message is displayed if you enter a string this way.

The correct way to enter these lines is:

WAVE> PLOT, x, y, Title = ’Average ’ + $
’Air Temperatures by Two-Hour Periods’

; This is the correct way to split a string onto two
; command lines.

• Reserved words, such as FOR, IF, CASE, are always shown in uppercase.

x Preface PV-WAVE User’s Guide

Technical Support
If you have problems installing, unlocking, or running your software, contact
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

• Your license number, a six-digit number that can be found on the packing slip
accompanying this order. (If you are evaluating the software, just mention that
you are from an evaluation site.)

• The name and version number of the product. For example, PV-WAVE 7.0.

• The type of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

• A detailed description of the problem.

Office Location Phone Number

Corporate Headquarters
Houston, Texas 713-784-3131

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700

Technical Support xi

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

or by sending E-mail to:

Office Location FAX Number

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-4873

Taiwan +886-2-727-6798

United Kingdom +44-1-344-458-748

Office Location E-mail Address

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk

xii Preface PV-WAVE User’s Guide

Electronic Services

Service Address

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE
Mailing List: Majordomo@boulder.vni.com

To subscribe
 include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com

1

CHAPTER

1

WAVE User’s Guide

Learning PV-WAVE
This chapter discusses some of the PV-WAVE learning aids that are available. Use
this chapter to find the best place for you to begin exploring PV-WAVE.

Using the Tutorial
The PV-WAVE Tutorial helps you begin using PV-WAVE Foundation and the com-
panion technologies — PV-WAVE Visual Exploration, PV-WAVE:IMSL
Mathematics, PV-WAVE:IMSL Statistics — as well as some of the specialized
optional toolkits. The logical approach used in the tutorial gets you started in a
focused and productive way, so that you can have immediate results.

We recommend that new users start with the PV-WAVE Tutorial.

Using Online Help
PV-WAVE has an easy-to-use online help facility that allows you to find and dis-
play information on many PV-WAVE features.

Using Online Help on UNIX and OpenVMS

Help from the Command Line

At the WAVE> prompt, enter:

WAVE> HELP

This command starts PV-WAVE’s online help system with the main Help Table of
Contents displayed by default.

2 PV-WAVE User’s Guide

You can also display help on a particular PV-WAVE command. For example, for
help on the REBIN command, you can type:
WAVE> HELP, ’REBIN’

VDA Tools Help

Context sensitive help is provided with all VDA Tools (Visual Data Analysis).
Each VDA Tool has a menu bar with a Help menu. The Help menu contains the
following functions:

• On Window — Displays the Help viewer with the Table of Contents for
information on the VDA Tool.

• On PV-WAVE — Brings up the Table of Contents for PV-WAVE online help.
This is the full PV-WAVE reference.

• On Help — Displays detailed information on how to use the Help system.

• On Version — Displays the PV-WAVE version number and information on
electronic services.

Help is also available from VDA Tool dialog boxes. Most dialog boxes have a Help
button in the lower right-hand corner. When you click this button, the Hyperhelp
viewer appears displaying information on the dialog box.

Printing from Online Help

To print information from the help system, select File=>Print from the online help
viewer menu. This sends output directly to the default printer.

To configure the print driver (e.g., to specify a printer name, output filename, page
orientation, scale, or number of copies), select File=>Printer Setup from the
online help viewer menu.

For detailed instructions on how to use the print functions and how to set up the
print driver, select Help=>How to Use Help from the online help viewer, and then
select the How To help topics: Print a Help Topic, Install a New Printer, or Con-
figure a Printer.

NOTE If you select the File option in the Printer Setup dialog box, the default
location in which the help system looks for files is $HOME, and the default filename
is xprinter.eps. To specify a different path and filename, enter them in the File
Name text field.

If you select the Printer option in the Printer Setup dialog box, you must have write
access to the file $HHHOME/xprinter/Xpdefaults and you must install a
printer for your site. The Hyperhelp help file describes how to install a printer.

Using Manuals Online 3

Using Online Help on Windows

Help from the Command Line

At the WAVE> prompt, enter:

WAVE> HELP

This command starts PV-WAVE’s online documentation system with the main
Help Table of Contents displayed by default.

You can also display help on a particular PV-WAVE command. For example, for
help on the REBIN command, you can type:

WAVE> HELP, ’REBIN’

Help from the Program Manager/Start Menu

You can start the main Help Table of Contents by clicking the PV-WAVE Help icon
in the PV-WAVE program group, or by selecting PV-WAVE Help from the
Start=>Programs=>PV-WAVE menu on Windows 95.

VDA Tools Help

Context sensitive help is provided with all VDA Tools (Visual Data Analysis).
Each VDA Tool has a menu bar with a Help menu. The Help menu contains the
following functions:

• On Window — Displays the Help viewer with the Table of Contents for infor-
mation on the VDA Tool.

• Index — Brings up the Table of Contents for PV-WAVE online help. This is
the full PV-WAVE reference.

• On Help — Displays detailed information on how to use the Help system.

• On Version — Displays the PV-WAVE version number and information on
electronic services.

Help is also available from VDA Tool dialog boxes. Most dialog boxes have a Help
button in the lower right-hand corner. When you click this button, the online help
viewer appears displaying information on the dialog box.

Using Manuals Online
A complete set of PV-WAVE manuals is available online as an optional
installation.

4 PV-WAVE User’s Guide

If you have the online manuals installed on your system, you can start an interactive
table of contents window by entering the following command at the PV-WAVE
prompt:

WAVE> HELP, /Documentation

Or, from the UNIX system prompt, type wavedoc.

On Windows, you may also double click on the Manuals Online icon or select the
Start=>Programs=>PV-WAVE=>Manuals Online menu item.

The online manuals include a main table of contents from which you can display
information from any PV-WAVE manual. Hypertext tables of contents are avail-
able for all books and indexes for most. You can copy and paste examples direcly
into PV-WAVE from the manuals, or you can print all or part of any manual.

For more detailed information about the online manuals, see the “Introduction to
Manuals Online” — online.

The Printed Documentation Set

The Standard PV-WAVE Documentation Set

PV-WAVE Tutorial

An instructional series of lessons designed to get you off to a quick and successful
start with PV-WAVE.

PV-WAVE User’s Guide

Detailed information about how to use the numerous features of PV-WAVE.

PV-WAVE Programmer’s Guide

Documents the PV-WAVE command language, which contains all the familiar fea-
tures of typical 4GL languages, such as FORTRAN, Pascal, and BASIC.

PV-WAVE Application Developer’s Guide

Discusses how to develop applications in PV-WAVE that have a Graphical User
Interface (GUI). This manual discusses interapplication communication, building
VDA Tools, using WAVE Widgets (Ww) and Widget Toolbox (Wt) routines, and
the Option Programming Interface (OPI).

The Printed Documentation Set 5

PV-WAVE Reference (Volumes 1, 2, and 3)

A three-volume set that describes the PV-WAVE functions and procedure, key-
words, system variables, fonts, executive commands and device drivers.

Documentation for Optional PV-WAVE Products

PV-WAVE IMSL Mathematics Toolkit

Descriptions of the routines that provide focussed, powerful tools for mathemati-
cal, statistical, and scientific computing. Many examples are included, so you can
easily see how to apply these routines to your own work.

PV-WAVE IMSL Statistics Toolkit

Descriptions of the routines that provide focussed, powerful tools for mathemati-
cal, statistical, and scientific computing. Many examples are included, so you can
easily see how to apply these routines to your own work.

PV-WAVE:GTGRID

Powerful interpolation and extrapolation techniques provided by
PV-WAVE:GTGRID are used in PV-WAVE to produce technically superior grid-
ded data sets. Even if your data set is large, sparse, faulted, noisy, or non-uniform,
PV-WAVE:GTGRID provides you with the best in a wide choice of traditional and
state-of-the-art algorithms for the gridding process.

PV-WAVE:Signal Processing Toolkit

Signal processing is widely used in engineering and scientific research and devel-
opment for representing, transforming, and manipulating signals and the
information they contain. The PV-WAVE:Signal Processing Toolkit is a collection
of digital processing functions that work in conjunction with PV-WAVE Advan-
tage. These functions are designed for easy use by the beginning signal processor,
while providing the advanced signal processor with many options for solving dif-
ficult problems.

PV-WAVE:Image Processing Toolkit

Image Processing is used in a number of different fields, including biomedicine,
microscopy, remote sensing, and scientific research. Common image processing
operations include image visualization, transformation, filtering, and analysis.
These types of functions and more are provided in the Image Processing Toolkit.
The easy-to-use functions are available from the PV-WAVE command line as well

6 PV-WAVE User’s Guide

as through a graphical user interface designed using the PV-WAVE Visual Data
Analysis (VDA) technology.

PV-WAVE:Database Connection

PV-WAVE is the only Visual Data Analysis product to let you directly connect,
query, and extract data from possibly your most valuable corporate asset — your
formal SQL database. Database Connection uses standard SQL select statements
to let you extract the data you need from any SQL database in your network. In
combination with PV-WAVE's integrated table tools for managing and manipulat-
ing tabular data, there is no better way to extract meaning – and value – from your
data.

PV-WAVE:ODBC Connection

PV-WAVE:ODBC Connection functions let you import data from ODBC compli-
ant data sources into PV-WAVE for Windows. Once the data is imported, you can
use PV-WAVE to analyze, manipulate, and visualize the data.

JWAVE

JWAVE lets you create Java client applications that communicate directly with PV-
WAVE running on a remote server. On the server side, PV-WAVE code is used to
analyze data and generate graphics. On the client side, a Java applet (or application)
lets users interact with the PV-WAVE session and display the graphics returned
from PV-WAVE.

Using the Gallery
The PV-WAVE Gallery is a suite of sample PV-WAVE applications. The entire
Gallery program is written using PV-WAVE to display a wide range of application
areas appropriate for Visual Data Analysis. The application code and data files are
provided so you can extract parts of them and use them within your own
applications.

Using the Gallery 7

Figure 1-1 Advanced rendering techniques are used to display a region of high oil potential
in this example from the PV-WAVE Gallery.

The objective of the Gallery is to highlight the performance and flexibility of
PV-WAVE. While your own applications may be more or less elaborate, the Gal-
lery helps you understand how PV-WAVE helps users discover and understand the
trends, anomalies, and relationships in their data.

PV-WAVE Gallery Setup Under UNIX and OpenVMS

Starting the PV-WAVE Gallery is similar to starting up PV-WAVE. First, set up the
environment variables and then start the Gallery:

From a C shell:

(UNIX) source $VNI_DIR/wave/bin/wvsetup

wave_gallery

where VNI_DIR is the directory in which PV-WAVE is installed.

From a Korn or Bourne shell:

(UNIX) source $VNI_DIR/wave/bin/wvsetup.sh

wave_gallery

where VNI_DIR is the directory in which PV-WAVE is installed.

(OpenVMS) @VNI_DIR:[WAVE.BIN]WVSETUP.COM

8 PV-WAVE User’s Guide

@wave_gallery.com

where VNI_DIR is the directory in which PV-WAVE is installed.

You can run the Gallery interactively by selecting the Gallery’s menu buttons.

PV-WAVE Gallery Setup Under Windows

You can start the PV-WAVE Gallery from the WAVE> prompt.

First, start up PV-WAVE.

Next, at the WAVE> prompt, press the F2 key,

— OR —

type the command for starting the Gallery.

WAVE> wave_gallery

You can run the Gallery interactively by selecting the Gallery’s menu buttons.

Using the Demo Files
A great many demonstration programs are distributed with PV-WAVE. Most of
these programs are located under:

(UNIX) <wavedir>/demo

(OpenVMS) <wavedir>:[DEMO]

(Windows) <wavedir>\demo

Where <wavedir> is the main PV-WAVE directory.

This demonstration area is freely available to you to explore. All of the demonstra-
tion programs are written in the PV-WAVE language. You can use any of the code
from these programs in your own applications. In many of the directories, README
files describe the demonstration programs in detail. Additional information can be
found as comments in the program files themselves.

9

CHAPTER

2

Getting Started: UNIX and OpenVMS
This chapter explains how to get started using PV-WAVE if you are running under
UNIX or OpenVMS.

Starting PV-WAVE
Before running PV-WAVE, the wvsetup command (UNIX) or WVSETUP.COM
command (OpenVMS) must have been executed one time after installation. These
commands are described in detail in your installation guide.

Starting PV-WAVE Interactively

To start PV-WAVE, at the operating system prompt type wave and press
<Return>. The PV-WAVE prompt appears:

WAVE>

This is a mode where you can interactively enter commands at the WAVE> prompt.
If you see an error and PV-WAVE does not start, refer to your installation guide for
troubleshooting information.

UNIX USERS If you use a Korn shell note the following: If you use either set
-o nounset or set -u in your shell, entering the wave command without a
parameter causes an error. These ksh commands tell the shell to treat unset param-
eters as an error when substituting. After running wvsetup.sh, PV-WAVE
expects $* to contain the parameters to the wave call. Since set -u or

10 PV-WAVE User’s Guide

set -o nounset tell ksh to treat unset parameters as an error, calling
PV-WAVE without parameters will cause that error.

OpenVMS USERS You may need to increase your process defaults to run
PV-WAVE, especially if you use large datasets. Your OpenVMS system adminis-
trator can help you set your process defaults properly. The Guide to OpenVMS
Performance Management provides a discussion of process limits and parameters.
For example, the following process limits work well for the PV-WAVE Gallery:

WSdef: 5000
WSquo: 20000
Pgflquo: 100000

Executing a Command (Batch) File at Startup

A command file, or “batch file”, is a file that contains PV-WAVE commands. When
a command file is executed, each command in the file is executed. When the end of
the file is reached, control reverts to the interactive mode, that is, the WAVE>
prompt is displayed, and you can type commands from the keyboard. Also you may
call the EXIT procedure from within the command file to exit PV-WAVE and
return to the operating system prompt.

You can execute a command file directly at startup by entering the following at the
operating system prompt:

wave filename

NOTE The filename must be a correctly constructed command file. It cannot be a
PV-WAVE procedure file. Command files are explained in more detail in the PV-
WAVE Programmer’s Guide.

You can also set the environment variable (or OpenVMS logical)
WAVE_STARTUP to execute a command file when you enter the command that
starts PV-WAVE. See the PV-WAVE Programmer’s Guide for more information.

Stopping PV-WAVE 11

Stopping PV-WAVE
The simplest way to stop PV-WAVE is to type EXIT or QUIT at the WAVE>
prompt. Other more complicated methods of stopping include aborting, suspend-
ing, and interrupting. All these methods are explained in this section.

Exiting PV-WAVE

CAUTION When you exit PV-WAVE, you are returned to the operating system
prompt. Variable assignments are lost unless you saved them yourself by saving the
session; however, data that is buffered for open output files is flushed to these files
before exiting is complete.

Exiting on a UNIX System

If you type EXIT or QUIT at the WAVE> prompt, you will exit back to the operat-
ing system. Entering a <Control>-D as the first character on the command line
performs the same function. If the <Control>-D is not the first character on the
command line, it simply ends the input line as if a <Return> had been entered.

Exiting on an OpenVMS System

If you type EXIT or QUIT at the WAVE> prompt, you will exit back to the operat-
ing system. Entering a <Control>-Z as the first character on the command line
performs the same function. If the <Control>-Z is not the first character on the
command line, it ends the input line as if a <Return> had been entered. The input
line is executed, and then PV-WAVE exits.

Suspending PV-WAVE

When you suspend PV-WAVE, you are returned to the operating system prompt;
however, PV-WAVE is still running as a background process. All variables and
their values are saved.

Suspending PV-WAVE on a UNIX System

<Control>-Z is the normal UNIX suspend character. Temporarily, it stops a process
and places it in the background. Typing the suspend character suspends PV-WAVE
and returns you to the shell process where you can enter one or more commands,
for example, to run a text editor. After completing the commands, type fg to return
PV-WAVE to the foreground.

12 PV-WAVE User’s Guide

Suspending PV-WAVE on an OpenVMS System

There is no method for suspending PV-WAVE on OpenVMS systems.

Interrupting the Current PV-WAVE Command

<Control>-C is the interrupt character. Typing the interrupt character generates a
keyboard interrupt. Under OpenVMS, <Control>-C is always the interrupt charac-
ter. However, under UNIX, the interrupt character can be changed by you outside
of PV-WAVE. This is rarely done, so for the purposes of this manual, we assume
the default convention.

When you type <Control>-C at the WAVE> prompt, the following message is
displayed:

% Interrupt encountered.

When the interpreter regains control, you are returned to the WAVE> prompt. You
can continue after interrupting PV-WAVE with the .CON executive command. For
more details about using executive commands such as .CON to control programs,
see the PV-WAVE Reference.

Aborting PV-WAVE

When you abort PV-WAVE, a message appears, such as quit (core dumped)
and you are returned to the operating system prompt. Remove the core file before
re-entering PV-WAVE.

Aborting on a UNIX System

As with any UNIX process, PV-WAVE may be aborted by typing <Control>-\.

CAUTION This is a very abrupt exit — all variables are lost, and the state of open
files will be uncertain. Thus, although it can be used to get out of PV-WAVE in an
emergency, its use should be avoided.

After aborting PV-WAVE in a UNIX environment, you may find that your terminal
is set up improperly. You can restore the proper settings for your terminal by issu-
ing the UNIX command:

% reset

or

% stty echo -cbreak

Entering Commands at the Command Line 13

Aborting on an OpenVMS System

As with any OpenVMS program, PV-WAVE may be aborted by typing <Control>-
Y.

CAUTION Aborting PV-WAVE with <Control>-Y should only be used as an
emergency measure since all the variables are lost and some output may disappear.

It is possible to resume PV-WAVE by typing the DCL command:

$ CONTINUE

However, if any DCL command that causes OpenVMS to run a new program is
issued prior to the CONTINUE command, the PV-WAVE session is totally and irre-
versibly lost.

Entering Commands at the Command Line
When the WAVE> prompt is visible, you are located at the PV-WAVE command
line. The command line gives you immediate access to all the data analysis and
graphics display commands and procedures that are part of PV-WAVE.

For example, the following command produces an XY plot of the integers 0 to 99:

WAVE> PLOT, INDGEN(100)

NOTE The commands PLOT and INDGEN are PV-WAVE system routines. There
are many such routines, which are all documented in the PV-WAVE Reference.

As you enter commands at the keyboard, they are compiled and executed immedi-
ately. You see the data transformations and results on your computer screen
instantly.

When using the command line, data analysis is quick and simple. Using PV-WAVE
commands, you read in the data and, within seconds, you can begin manipulating
it, discovering what trends and patterns it holds. Here are some additional examples
of commands entered directly at the PV-WAVE command line.

WAVE> x = 7*8

; Assigns the value of 7 times 8 to the variable x.

WAVE> PRINT, ’x = ’, x

x = 56

; Prints the string “x = ” and the value of x which is 56.

14 PV-WAVE User’s Guide

WAVE> SET_PLOT, ’PS’

; This command tells PV-WAVE to use the PostScript driver to
; produce graphics output for a PostScript printer or plotter.

WAVE> .RUN testfile

; Compiles and runs the file named testfile. If this file is not found in
; the current directory, the directory search path is examined.

WAVE> FOR I = 1,3 DO PRINT, I, I^2

1 1

2 4

3 9

; This statement calculates the square of the numbers 1 through 3.

Function and Procedure Libraries

Some functions and procedures come from an area known as the Standard Library.
These are routines that have been written using the PV-WAVE language and are
fully documented and supported by Visual Numerics, Inc.

You can also use functions and procedures from the Users’ Library. This library
contains many useful routines that have been written and submitted by PV-WAVE
users; however, the routines in this area are not officially supported by Visual
Numerics, Inc.

The source code for Standard Library routines is in:

(UNIX) <wavedir>/lib/std

(OpenVMS) <wavedir>:[LIB.STD]

The source code for Users’ Library routines is in:

(UNIX) <wavedir>/lib/usr

(OpenVMS) <wavedir>:[LIB.USR]

Where <wavedir> is the main PV-WAVE directory.

For more information on the Users’ Library, see the PV-WAVE Programmer’s
Guide.

Using Keywords to Modify Commands

Keywords are optional parameters that modify PV-WAVE commands. The PV-
WAVE Reference lists every keyword associated with each command. For example,
the PLOT command, which is used to create 2D line plots has dozens of keywords
associated with it. These keywords can be used to add titles, change the color,

Entering Commands at the Command Line 15

thickness, and style of lines, modify the way axis tick marks appear, change the
data range, add symbols, and many more.

In the following example, the keyword used to modify the plot is shown in bold
type:

PLOT, INDGEN(100), Title = ’Hello World’

Keywords are normally assigned either a numerical or string value. Some key-
words are Boolean in nature and can either be on or off. To turn such a keyword
“on”, set it equal to 1 or precede the keyword by a / (backslash). Preceding a key-
word by a backslash is equivalent to setting it equal to 1. To turn it “off” set it to 0.
For example:

PLOT, INDGEN(100), INDGEN(100), /Polar

and

PLOT, INDGEN(100), INDGEN(100), Polar=1

are equivalent statements. They both activate the Polar keyword, which creates a
polar plot instead of a Cartesian X-Y plot.

Most keywords have default values. The default for the Polar keyword is 0, or inac-
tive. The default values for some keywords are determined by system variables.

Relationship Between Keywords and System Variables

For some keywords, the default values are derived from system variables, which
are a special class of predefined variables available to all PV-WAVE applications.
All system variables are denoted with an initial exclamation point (!). For example,
the system variable !P.Color contains the default setting for the keyword Color.

When using many plotting functions and procedures, the keyword Color can be
used to change the value of !P.Color. Here’s an easy way to use a system variable
to change the value of !P.Color to a bright purple color:

TEK_COLOR

; This command loads 32 predefined, unique, highly
; saturated colors into the bottom 32 indices of the
; color table.

!P.Color = 6

; Changes !P.Color to purple (the color identified by
; the color index 6). The change is temporary — it only lasts
; until some other color table is loaded or until you end
; your PV-WAVE session. For more permanent results,
; you can save your session, and then this setting is
; available for later use.

16 PV-WAVE User’s Guide

For more information about system variables, see the PV-WAVE Programmer’s
Guide. For more information about saving sessions, see Saving and Restoring Ses-
sions on page 16 in this manual.

Using Command Recall
PV-WAVE saves the last 20 command lines you enter. These command lines can
be recalled, edited, and re-entered. For example, the up cursor key on the keypad
recalls the previous command you entered. Pressing it again recalls the line before
that, and so on. When a command is recalled, it is displayed after the PV-WAVE
prompt and may be edited or entered as is.

The command recall feature is enabled by setting the system variable !Edit_Input
to 1, and is disabled by setting it to 0.

Getting Information about the Current Session
The INFO procedure provides information about the PV-WAVE session in
progress.

Calling INFO with no parameters displays an overview of the session, including
the current definitions of all of your variables. You can obtain more specific
information about the session by providing keywords with the INFO command.

For example, INFO, /Device provides information about the current graphics
device being used by PV-WAVE. The command INFO, /Memory reports the
amount of dynamic memory in use and the number of times it has been allocated
and deallocated. For more information about the INFO procedure, see Getting Ses-
sion Information in the PV-WAVE Programmer’s Guide.

Saving and Restoring Sessions
The SAVE and RESTORE procedures are used together to save the state of user-
generated variables, system variables, and compiled procedures and functions. The
saved session can then be restored at a later time. This ability to “checkpoint” a ses-
sion and then recover it later can be very convenient. Save files can be used for
many purposes:

• Save files can be used to recover variables that are used from session to session.
A startup file can be used to execute the RESTORE command every time

Saving and Restoring Sessions 17

PV-WAVE is started. See Modifying Your Environment in the PV-WAVE Pro-
grammer’s Guide for more details.

• The state of a session can be saved, then quickly restored to the same point,
allowing you to stop working, and then later resume at a convenient time.

• Saved files relieve you of the need to remember the dimensions of arrays and
other details. It is very convenient to store images this way. For example, if the
three variables R, G, and B hold the colortable vectors, and the variable Image
holds the image data, the statement:

SAVE, Filename=’image.dat’, R, G, B, Image

saves everything required to display the image properly, in a file named
image.dat. At a later time, the command:

RESTORE, ’image.dat’

will restore the four variables from the file.

• Long iterative jobs can save partial results in Save/Restore format to guard
against losing data if some unexpected event such as a machine crash were to
occur.

• When used with the Wavepoint keyword, SAVE saves PV-WAVE variables so
that they can be read into PV-WAVE Point & Click and PV-WAVE Personal
Edition. This keyword is disabled for the Digital Alpha Digital UNIX platform.

Using the SAVE Procedure

You can save user-generated variables, system variables, compiled procedures, and
compiled functions for future sessions.

Saving for Future Sessions

The SAVE procedure saves variables, system variables, and compiled user-written
procedures and functions in a file, using an efficient binary format, for later recov-
ery by RESTORE. It has the form:

SAVE [, var1, ..., varn]

where varn are the named variables to be saved. In addition, you can use keywords
with SAVE. For a description of these keywords, see Chapter 2, Function and Pro-
cedure Reference in the PV-WAVE Reference.

18 PV-WAVE User’s Guide

CAUTION Under UNIX, creating a new save file causes any existing file with the
same name to be lost. Use the Filename keyword with SAVE to avoid destroying
desired files. For more information, see the PV-WAVE Reference.

Using the RESTORE Procedure

The RESTORE procedure restores the objects previously saved in a save file by the
SAVE procedure.

RESTORE has the form:

RESTORE [, filename]

where filename is the name of the save file to be used. If filename is not supplied,
the filename wavesave.dat is used. In addition, you can use keywords with
RESTORE. For a description of these keywords, see the PV-WAVE Reference.

Situations in which the contents of the file will not be restored are:

• When attempting to restore a structure variable, the structure of the saved vari-
able must either not exist, or must agree with the existing structure definition.
If the structure is already defined and does not match, RESTORE issues an
error message, skips the variable in question, and continues with the next vari-
able in the file. This also applies to system variables.

NOTE Visual Numerics, Inc., reserves the right to change the structure of system
variables, although such changes are not anticipated. Generally, there is little need
to save system variables, so this restriction is not a problem.

• Read-only system variables are not restored. RESTORE quietly skips over
such variables in the file unless the Verbose keyword is present. In this case an
informative message is issued as the variable is skipped.

Printing Your Work
PV-WAVE supports a number of output devices and formats, such as PostScript
printers, HPGL and PCL plotters, and Computer Graphics Metafiles (CGM). These
output device drivers are described in detail in the PV-WAVE Reference.

The five steps you take to produce graphics output are the same no matter which
output device or format you use. The steps are:

Printing Your Work 19

❑ Select the graphics output device or format. (This automatically opens an out-
put file.)

❑ Configure the output device to your specifications.

❑ Enter the PV-WAVE commands to display your graphics

❑ Close the output file.

❑ Use a UNIX or OpenVMS system command to send the output file to a printer
or plotter.

For example:

SET_PLOT, ’ps’

; Select the graphics device.

DEVICE, Filename=’myplot.ps’, /Eps

; Configure the output device. This command specifies
; the output filename and the type of file — Encapsulated
; PostScript (EPS).

PLOT, INDGEN(100), Title=’Hello World’

; Enter the graphics commands.

DEVICE, /Close

; Close the device.

$lpr myplot.ps

; Print command on a UNIX system. The dollar
; sign ($) is used to issue an operating system command
; from PV-WAVE.

$print/queue=post_q myplot.ps

; Print command on an OpenVMS system. The dollar
; sign ($) is used to issue an operating system command
; from PV-WAVE.

Each step is described in the following sections.

Selecting the Output Device with SET_PLOT

Select a graphics output device with the SET_PLOT command. The command is:

SET_PLOT, ’string’

where string can be any one of the following letter codes:
Device Driver Codes

Code Output Device

CGM Computer Graphics Metafile format

20 PV-WAVE User’s Guide

For example, this command selects the PostScript device:

SET_PLOT, ’ps’

Configuring the Output Device with DEVICE

Once the graphics output device has been selected, it is controlled or configured
with the DEVICE command. The DEVICE command uses keywords to control the
specific functions of each output device. Since each output device is unique, the
number and names of keywords that are valid with the DEVICE command are dif-
ferent depending upon the device selected. For example, the DEVICE command
for the PostScript device has 34 valid keywords, whereas the same DEVICE
command for the Tektronix 4510 rasterizer has only 10 valid keywords.

The DEVICE keywords for each output device supported by PV-WAVE are listed
in the PV-WAVE Reference.

If no DEVICE command is issued after the SET_PLOT command, then the device
is configured with default values. To see the current configuration of any output
device, issue the SET_PLOT command to select the device and then use the INFO
command to obtain information about the device. For example, to learn the current
configuration of the PostScript device, you would type the following:

SET_PLOT, ’ps’

INFO, /Device

Entering Graphics Commands for Output

After you have configured the output device to your specifications, you now enter
appropriate graphics commands for the output you wish to produce. These are the
same graphics commands you would issue if you were displaying output on a dis-
play screen. For example, any of the following graphics commands would be
appropriate:

HP HPGL device

PCL PCL device

PS PostScript device

TEK Tektronix terminal

Device Driver Codes (Continued)

Code Output Device

Printing Your Work 21

PLOT, mydata, Title=’Available Light ’ + 'Measurement'

TVSCL, my—image

PLOTS, x, y, /Normal

SHADE_SURF, peak, Shades=peak_colors

XYOUTS, 300, 450, ’Lost acreage’, /Device

SURFACE, peak, Bottom=35, Color=248

Closing the Output File

Before the graphics output file can be sent to the printer or plotter it must be closed.
For example, the following commands do not print a file, as you might expect:

SET_PLOT, ’ps’

PLOT, x, y

SPAWN, ’lpr wave.ps’

This attempt to print the file is premature. It fails because the file is still open within
PV-WAVE.

Files are closed automatically when you exit PV-WAVE, but the best way to close
an output file is to close it explicitly with the DEVICE command. After you enter
the graphics commands for your desired graphics output, enter the following
command to close the output file:

DEVICE, /Close

Sending the Output File to the Printer or Plotter

Once an output file has been closed, it can be sent to a printer or plotter in the nor-
mal way (e.g. with an lpr command in a UNIX environment or a print
command in an OpenVMS environment). But it is often more convenient to send a
file to a printer or plotter without exiting PV-WAVE. The best way to do this is to
use the “$” shortcut method for spawning an external process. For example, you
could issue one or the other of the following two commands at the PV-WAVE
prompt to send a file named peak.ps to a PostScript printer:

(UNIX) WAVE> $lpr peak.ps

(OpenVMS) WAVE> $print/queue=post_q peak.ps

NOTE If your PostScript printer looks like it is printing something, but nothing
comes out, you may have forgotten to close the file before you sent it to the printer.

22 PV-WAVE User’s Guide

23

CHAPTER

3

Getting Started: Windows
This chapter explains how to get started using PV-WAVE if you are running under
Microsoft Windows.

Starting PV-WAVE
You can start PV-WAVE in one of two “modes”: Console mode or Home window
mode.

In Console mode, you have access to theWAVE> prompt only. Home window mode
provides additional features, such as menus and a tool bar, to help you manage your
session.

NOTE Refer to online help for information on the features found in the Home win-
dow. Start by selecting On Window from the Home window Help menu.

Under Windows NT

When PV-WAVE was installed on your system, a Program Group was created. You
can start PV-WAVE from an icon in the PV-WAVE Program Group or by typing
one of the following startup commands in MS DOS window:

❑ <install_directory>\wave\bin\bin.i386nt\wave — Starts
PV-WAVE in Console mode.

❑ <install_directory>\wave\bin\bin.i386nt\wavewin— Starts
PV-WAVE in Home window mode.

24 PV-WAVE User’s Guide

After a brief pause, the PV-WAVE Console or Home window appears displaying
the PV-WAVE prompt:

WAVE>

When you see this prompt, PV-WAVE is ready for you to enter commands.

Under Windows 95

When PV-WAVE was installed on your system, PV-WAVE startup commands
were added to the Start button. You can start PV-WAVE by selecting Start=>Pro-
grams=>PV-WAVE 6.0 or by typing one of the following startup commands in an
MS-DOS window:

❑ <install_directory>\wave\bin\bin.i386nt\wave — Starts
PV-WAVE in Console mode.

❑ <install_directory>\wave\bin\bin.i386nt\wavewin— Starts
PV-WAVE in Home window mode.

After a brief pause, the PV-WAVE Console or Home window appears displaying
the PV-WAVE prompt:

WAVE>

When you see this prompt, PV-WAVE is ready for you to enter commands.

Summary of PV-WAVE Startup Commands
You can start PV-WAVE in Home window mode, Console window mode, or DDE
server mode. The command syntax for each mode is presented in the following
table.

The command line options available for the wave command are listed in the
following table.

Command Line Syntax for Running PV-WAVE

Command Mode

wave Run PV-WAVE in a Console window. (The options are
described in the next table.)

wavewin Run the PV-WAVE Home window.

wavedde Run PV-WAVE as a DDE (Dynamic Data Exchange) server.
This startup command is discussed later in this chapter.

Stopping PV-WAVE 25

NOTE Several of PV-WAVE’s command line options can be combined on one
command line.

Standard I/O and Error Redirection

Previous versions of PV-WAVE on Windows (before Version 6.0), allowed
command line flags for standard I/O and error redirection. With Version 6.0, these
flags are no longer supported. Instead you can use standard I/O redirection on the
command line. For example, the previous command line flags:

wave -i infile -o outfile -e errfile

can be replaced with:

wave < infile > outfile 2> errfile

in PV-WAVE 6.0.

Only the wave command supports I/O redirection. The wavedde supports redi-
rection of standard output and standard error, but not standard input (since input is
accepted only from DDE clients). The command wavewin does not support any
I/O or error redirection.

Stopping PV-WAVE
The simplest way to stop PV-WAVE is to type EXIT or QUIT at the WAVE>
prompt. You can also interrupt the current PV-WAVE command and then resume
with the .CON command, as explained in this section.

Exiting PV-WAVE
Entering an EXIT or QUIT command at the WAVE> prompt causes PV-WAVE to
exit unconditionally, and you are returned to the operating system prompt. The

Command Line Options for the wave Command

Command Line Option Meaning

filename Execute a command file during startup.

–r or –rt plus filename Start PV-WAVE in runtime mode. The previously com-
piled application stored in filename starts automatically.

Note: Command line options are not case-sensitive. In other words, they can be
entered in either lower, mixed, or upper case.

26 PV-WAVE User’s Guide

same thing happens if you enter <Control>-D or <Control>-Break; for more
details, refer to Control Characters that Interrupt or Stop PV-WAVE on page 26.

CAUTION When you exit unconditionally, variable assignments are lost and any
customizations made to PV-WAVE, such as changing the font used in the windows,
are lost unless you have explicitly saved them yourself by saving the session. How-
ever, data that is buffered for open output files is flushed to these files before exiting
is complete.

Interrupting the Current PV-WAVE Command
If you are running PV-WAVE in Console mode, <Control>-C is the interrupt char-
acter. Typing the interrupt character generates a PV-WAVE keyboard interrupt.
When you enter the interrupt character at the WAVE> prompt, the following mes-
sage is displayed:

% Interrupt encountered.

When the interpreter regains control (there may be a noticeable delay), you are
returned to the WAVE> prompt. After interrupting PV-WAVE, you can continue
with the .CON command. For more details about using executive commands such
as .CON to control programs, see the PV-WAVE Reference.

Control Characters that Interrupt or Stop PV-WAVE

This section describes individual characters that can be entered in conjunction with
the <Control> key to interrupt or stop PV-WAVE. These characters are summa-
rized in the following table.

NOTE The control characters listed in the previous table are only recognized in
the Console window. Control characters are not recognized in any auxiliary win-
dows, such as graphics windows. (Exception: <Control>-C is a standard Windows
accelerator, so it is recognized in any window where a Copy to Clipboard operation
is meaningful.)

Character Action

<Control>-C Keyboard interrupt; enter .CON to continue.

<Control>-D Signifies EOF; causes PV-WAVE to exit.

<Control>-Break Abort.

Executing a Command (Batch) File at Startup 27

Executing a Command (Batch) File at Startup
A command file, or “batch file,” is a file that contains PV-WAVE commands. When
a command file is executed, each command in it is executed. When the end of the
command file is reached, control reverts to interactive mode. In other words, the
Console window and the WAVE> prompt are displayed, and you can make menu
selections and type commands from the keyboard. Alternatively, you may call the
EXIT procedure from within the command file to exit PV-WAVE and return to the
operating system prompt.

You can execute a command file directly at startup by entering the following
command at the prompt in an MS-DOS window:

wave filename

NOTE The filename must be a correctly constructed command file. It cannot be a
PV-WAVE procedure file or a file created with the SAVE procedure. Command
files are explained in more detail in the PV-WAVE Programmer’s Guide.

You can also set the environment variable WAVE_STARTUP to execute a command
file when you enter the command that starts PV-WAVE. For more details, see the
PV-WAVE Programmer’s Guide.

DDE Runtime Mode — wavedde
The DDE runtime mode initializes PV-WAVE as a DDE (Dynamic Data
Exchange) server. The PV-WAVE DDE server runtime mode is a non-interactive
version of PV-WAVE that serves DDE requests from client applications that are
able to access PV-WAVE functionality. In other words, when PV-WAVE has been
initialized as a DDE server, another application can enter the commands to control
this version of PV-WAVE.

Textual output and messages are displayed in the shell window from which the
PV-WAVE DDE Server was launched. If the server was launched from an icon (or
Start button), then a separate console window is created on the desktop to display
the output.

For more information about how to start PV-WAVE as a DDE (dynamic data
exchange) server, see the PV-WAVE Development Guide.

For more information on starting PV-WAVE in runtime mode, see the PV-WAVE
Programmer’s Guide.

28 PV-WAVE User’s Guide

Windows Used by PV-WAVE
Under Microsoft Windows, PV-WAVE uses different types of windows for differ-
ent tasks. The different classes of windows PV-WAVE uses are listed in the
following table:

Home Window

For detailed information on the Home window, refer to online help—select
Help=>On Window.

Console Window

The Console window is where commands are entered and where PV-WAVE dis-
plays its messages and textual output.

TIP To use cut and paste in the Console window under Windows 95, you need to
disable the Fast Paste function. To do this, click on the Properties icon in the MS-
DOS window where you are running PV-WAVE. Fast Paste is listed under the
Misc tab.

NOTE The Console window differs slightly between Windows NT and Windows
95. The Windows 95 version contains a row of icons used for editing text. For
information on these functions, refer to Windows online help. The following fig-
ures show both the Windows NT and Windows 95 versions of the Console window
for PV-WAVE.

Windows PV-WAVE Uses

Window Function

Home Displays the WAVE> prompt for entering PV-WAVE com-
mands. In addition, provides menus and a tool bar to help you
manage your session. Refer to online help for information about
the Home window.

Console Displays the WAVE> prompt for entering PV-WAVE com-
mands.

Graphics Displays PV-WAVE graphics.

Help Displays PV-WAVE online help.

Windows Used by PV-WAVE 29

Graphics Windows

PV-WAVE graphics windows are used to display data in a variety of ways. The
type of graphics window you choose to use depends on the dimensions of the vari-
ables you have to display and the type of analysis you wish to perform. For
example, if you have imported 8-bit image data, you would probably use the TV or
TVSCL commands to view your data as an image. The image is then displayed in
a graphics window.

Figure 3-1 PV-WAVE graphics windows

Help Window

The PV-WAVE Help window displays information from PV-WAVE’s online help
system. The Help window includes controls that you can use to access the informa-
tion in a variety of ways. Refer to the online help topic, How to Use Help, for more
detailed information about the Help window, and Using Online Help on Windows
on page 3 of this manual.

30 PV-WAVE User’s Guide

You can access this help topic by selecting Help=>How to Use Help from virtually
any Windows application, including PV-WAVE. An example of a PV-WAVE Help
window is shown in Figure 3-2.

Figure 3-2 PV-WAVE Help window (Windows 95 version).

Entering Commands at the Command Line
This section discusses ways to communicate with PV-WAVE.

When the WAVE> prompt is visible, you are located at the PV-WAVE command
line. The command line gives you immediate access to all the data analysis and
graphics display commands and procedures that are part of PV-WAVE.

Entering Commands at the Command Line 31

NOTE The PV-WAVE Reference describes all of the PV-WAVE commands (func-
tions and procedures).

As you enter commands at the keyboard, they are compiled and executed immedi-
ately. You see the data transformations and results on your computer screen
instantly.

When using the command line, data analysis is quick and simple. Using PV-WAVE
commands, you read in the data and, within seconds, you can begin manipulating
it, discovering what trends and patterns it holds.

The following statements can be entered directly at the WAVE> prompt. They cre-
ate and initialize the variablesVERBM,VERBF,MATHM, andMATHF, which contain
the verbal and math SAT scores for males and females:

VERBM = [463, 459, 437, 433, 431, 433, 431, 428, 430, 431, 430]

VERBF = [468, 461, 431, 430, 427, 425, 423, 420, 418, 421, 420]

MATHM = [514, 509, 495, 497, 497, 494, 493, 491, 492, 493, 493]

MATHF = [467, 465, 449, 446, 445, 444, 443, 443, 443, 443, 445]

A vector in which each element contains the year of the score is constructed with
the statement:

YEAR = [1967, 1970, INDGEN(9) + 1975]

The PLOT procedure, which produces an x versus y plot on a new set of axes,
requires one or two parameters: a vector of y–values, or a vector of x–values fol-
lowed by a vector of y–values. The following figure is produced using the
statement:

PLOT, YEAR, VERBM

32 PV-WAVE User’s Guide

Figure 3-3 Initial 2D plot.

Function and Procedure Libraries

Some functions and procedures come from an area known as the Standard Library.
These are routines that have been written using the PV-WAVE language and are
fully supported by Visual Numerics, Inc. The source code for Standard Library
routines can be found in:

(Windows) <wavedir>\lib\std

You can also use functions and procedures from the User Contributed Library; this
area is in

(Windows) <wavedir>\lib\user

Where <wavedir> is the main PV-WAVE directory.

Remember, however, that the routines in this area are not officially supported by
Visual Numerics, Inc.

For more information about how the Users’ Library is maintained, see the PV-
WAVE Programmer’s Guide.

Using Keywords to Modify Commands

Keywords are optional parameters that modify PV-WAVE commands. The PV-
WAVE Reference lists every keyword associated with each command. For example,
the PLOT command, which is used to create 2D line plots, has dozens of keywords
associated with it. These keywords can be used to add titles, change the color,
thickness, and style of lines, modify the way axis tick marks appear, change the
data range, add symbols, and many more.

The following example plots the values in the variable y. The keywords used to
modify the plot are shown in bold type:

PLOT, y, XRange = [200, 600], $
YRange = [-40, 40], Color = 36, $
Background = 110, XTitle = ’Index’, $
Title = ’PV-WAVE 2D Plot’, /Normal

Notice that keywords are normally assigned either a numerical or string value.
Some keywords are Boolean in nature and can either be on or off. To turn such a
keyword “on”, set it equal to 1 or precede the keyword by a / (slash). Preceding a
keyword by a slash is equivalent to setting it equal to 1. To turn it “off” set it to 0.
For example:

PLOT, y, /Polar

Entering Commands at the Command Line 33

and

PLOT, y, Polar = 1

are equivalent statements. They both activate the Polar keyword, which creates a
polar plot instead of a Cartesian X-Y plot.

Most keywords have default values. The default for the Polar keyword is 0, or inac-
tive. The default values for some keywords are determined by system variables.

Relationship Between Keywords and System Variables

For some keywords, the default values are derived from system variables. System
variables are a special class of predefined variables available to all PV-WAVE
applications. All system variables are denoted with an initial exclamation point (!).
For example, the system variable !P.Color contains the default setting for the key-
word Color.

When using many plotting functions and procedures, the keyword Color can be
used to change the value of !P.Color. Here’s an easy way to use a system variable
to change the value of !P.Color to a bright purple color:

TEK_COLOR

; This command loads 32 predefined, unique,
; highly-saturated colors into the bottom 32 indices
; of the color table.

!P.Color = 6

; Changes !P.Color to purple (the color identified by the
; color index 6). The change is temporary — it only lasts until
; some other color table is loaded or until you end your
; PV-WAVE session. For more permanent results, you can
; save your session, and then this setting is available for later use.

For more information about system variables, see the PV-WAVE Programmer’s
Guide. For more information about saving sessions, see Saving and Restoring
PV-WAVE Sessions on page 35 of this manual.

Using Command Recall

To recall previously entered commands, use the arrow keys as shown in the follow-
ing table.

To access a previous command Press these keys

Move “up” Up arrow (↑)

34 PV-WAVE User’s Guide

The command recall buffer “remembers” the last 20 commands that you have
entered.

Function Keys
By default, the following keys are assigned to actions:

TIP These function keys can be easily redefined, either by you or by someone else
at your site. This topic is discussed further in the next section.

Assigning Commands to Function Keys

Function keys may be equated to a character string using the DEFINE_KEY pro-
cedure. This allows frequently used strings and commands to be entered with a
single keystroke. For example, the <F10> key on your keyboard can be equated to
the string PLOT, as shown in the example below.

SETUP_KEYS

; Load predefined function key definitions.

DEFINE_KEY, ’F10’, ’PLOT’

; Enter the text “PLOT” at the WAVE> prompt when
; the F10 function key is pressed.

For detailed information on how to customize the behavior of your function keys
using the DEFINE_KEY procedure, see its description in the PV-WAVE Reference.

To see how your function keys are presently defined, enter this command:

Move “down” Down arrow (↓)

Keyboard Accelerator Function Keys

Function Key Action

F1 Invokes PV-WAVE’s online help system.

F2 Begins the PV-WAVE Gallery, an automated demonstration.

F3 Invokes PV-WAVE’s INFO command and prints the current
session status to the screen.

To access a previous command Press these keys

Getting Information about the Current Session 35

INFO, /Keys

TIP A natural place to put your key definitions is in your startup file so that the
function keys are defined when PV-WAVE is initialized. The defaults for the key
definitions are established by the SETUP_KEYS procedure that gets called from
the wavestartup file. For more information about startup files, see the PV-
WAVE Programmer’s Guide.

Getting Information about the Current Session
The INFO procedure provides information about the PV-WAVE session in
progress.

Calling INFO with no parameters displays an overview of the session, including
the current definitions of all of your variables. You can obtain more specific infor-
mation about the session by providing keywords with the INFO command.

For example,

WAVE> INFO, /Device

provides information about the current graphics device being used by PV-WAVE,
and

WAVE> INFO, /Memory

reports the amount of dynamic memory in use and the number of times it has been
allocated and deallocated. For more information about the INFO procedure, see
Getting Session Information in the PV-WAVE Programmer’s Guide.

Saving and Restoring PV-WAVE Sessions
You can enter the SAVE and RESTORE commands at the WAVE> prompt. These
functions are used to save and later restore the state of user-generated variables,
system variables, and compiled procedures and functions.

CAUTION If you run PV-WAVE in a Console window, you will not be prompted
to save your session when you close the Console window or when you exit
Windows.

36 PV-WAVE User’s Guide

This ability to “checkpoint” a session and then recover it later can be very conve-
nient. Save files can be used for many purposes:

• Save files can be used to recover variables that are used from session to session.
A startup file can be used to execute the RESTORE command every time
PV-WAVE is started. See the discussion of startup files in Modifying Your
Environment in the PV-WAVE Programmer’s Guide.

• The state of a PV-WAVE session can be saved, then quickly restored to the
same point, allowing you to stop working, and then later resume at a conve-
nient time.

• Saved files relieve you of the need to remember the dimensions of arrays and
other details. It is very convenient to store images this way. For example, if the
three variables R, G, and B hold the color table vectors, and the variable Image
holds the image data, the PV-WAVE statement:

SAVE, Filename=’image.dat’, R, G, B, Image

saves everything required to display the image properly in a file named
image.dat. At a later time, the command:

RESTORE, ’image.dat’

will restore the four variables from the file.

• Long iterative jobs can save partial results in save/restore format to guard
against losing data if some unexpected event such as a machine crash were to
occur.

NOTE For more information about the keywords that you can use when you enter
the command this way, refer to the description of SAVE in Chapter 2, Function and
Procedure Reference in the PV-WAVE Reference.

CAUTION Creating a new save file causes any existing file with the same name
to be lost. Use the Filename keyword with the SAVE procedure to avoid destroying
files that you want to keep.

Using the RESTORE Procedure

The RESTORE command restores the objects previously saved in a save file when
you used the SAVE procedure at the WAVE> prompt.

If a filename is not supplied in the call to RESTORE, the filename
wavesave.dat is used. In addition, you can use keywords with RESTORE.

Printing Your Work 37

NOTE For a description of these keywords, see the description of RESTORE in
Chapter 2, Function and Procedure Reference in the PV-WAVE Reference.

Things to Remember when Restoring Files

Situations in which the contents of the file will not be restored are:

• When attempting to restore a structure variable, the structure of the saved vari-
able must either not exist, or must agree with the existing structure definition.
If the structure is already defined and does not match, RESTORE issues an
error message, skips the variable in question, and continues with the next vari-
able in the file. This also applies to system variables.

NOTE Visual Numerics, Inc., reserves the right to change the structure of
PV-WAVE system variables, although such changes are not anticipated. Generally,
there is little need to save system variables, so this restriction is not a problem.

• Read-only system variables are not restored. RESTORE quietly skips over
such variables in the file unless the Verbose keyword is present. In this case an
informative message is issued as the variable is skipped.

Printing Your Work
PV-WAVE provides several methods of printing graphics. The easiest method is to
print directly from the window in which the graphics are displayed, but there are
other ways to print, too.
PV-WAVE supports hardcopy output to various plotters and printers, including all
the hardcopy devices supported by Windows. PV-WAVE also includes some of its
own hardcopy drivers; these drivers provide you with options not available when
you print via Windows.

Printing the Contents of a Graphics Window
The Print function on the graphics window Control menu lets you print the con-
tents of the graphics window.
The location of the graphics window Control menu button for a Windows NT win-
dow is shown in the following figure. On Windows 95, the Control menu is in the
same location.

38 PV-WAVE User’s Guide

Figure 3-4 PV-WAVE graphics window (Windows NT version). Click the Control menu but-
ton to display this window’s Control menu.

When you select Print, the Print dialog box appears. Use this dialog box to specify
printing options and to print your graphics. Refer to online help for detailed infor-
mation on using the Print dialog box.
In addition, you can print the contents of a graphics window using the WPRINT
command. For detailed information on WPRINT, see its description in the PV-
WAVE Reference.

Printing PV-WAVE Help Topics
Any help topic can be easily printed by displaying it in the Help window and then
selecting File=>Print Topic. The help topic printout will be sent to your com-
puter’s default printer.

To change your default printer, use the Print Manager window provided by
Windows.

Using the PV-WAVE Output Drivers

Output drivers allow you to output graphics in formats that can be exchanged with
other applications or sent to an output device. The following table lists the output
drivers supported by PV-WAVE.

Control menu button

Graphics window

Printing Your Work 39

The following steps apply no matter which output driver you select:

• Select the output device, such as PS or CGM, using the SET_PLOT command.
This automatically opens a file. (Note that the important last step in this proce-
dure will be to close the output file.)

• Configure the output device to your specifications with keywords to the
DEVICE procedure.

• Issue the commands that will display your graphic output, such as PLOT or
SHADE_SURF.

• Close the output file using the Close keyword to the DEVICE procedure.

See the PV-WAVE Reference for information on the DEVICE and SET_PLOT com-
mands and examples of their use.

Exporting Graphics to a File
Use the Export Graphics function to save the contents of a graphics window in a
file. When you choose this option, you see a dialog box that lets you select a file-
name and directory.

WWRITE_META and WWRITE_DIB are command line functions that also save
the contents of a graphics window in a file. For information on these functions, see
their descriptions in the PV-WAVE Reference.

Supported Output Devices and Window Systems

Device Name Description

NULL No graphic output

CGM Computer Graphics Metafile generator

HP Hewlett-Packard Graphics Language (HPGL) plotters

PCL Hewlett-Packard Printer Control Language (PCL)

PM Pixel map

PS PostScript devices

REGIS Regis graphics output devices

TEK Tektronix or compatible terminals

WIN32 Microsoft Windows WIN32 driver

WMF Windows metafile

X X Window System

Z Z-buffer device

40 PV-WAVE User’s Guide

Using the Clipboard
You can use the clipboard to copy graphics between PV-WAVE graphics windows
and between PV-WAVE and other graphics applications.

You can use the Clipboard to exchange graphics between PV-WAVE and other
applications if the other application supports the file formats:
• Device Independent Bitmap (DIB) or
• Enhanced-format metafile (EMF).

NOTE Many 16-bit Windows applications do not support enhanced metafiles.

Copying Graphics to the Clipboard
Select Copy to Clipboard to copy the graphics in the graphics window to the Clip-
board. Graphics on the Clipboard can be pasted into another PV-WAVE graphics
window, or into any graphics application that allows interaction with the Clipboard.
For example, you can paste PV-WAVE graphics from the Clipboard into a
Microsoft Paintbrush window.

Pasting Graphics from the Clipboard
Select Paste from Clipboard to paste the graphics on the Clipboard into a
PV-WAVE graphics window. For example, you can copy graphics from a
Microsoft Paintbrush window to the Clipboard, and then paste the graphics into
PV-WAVE.

41

CHAPTER

4

Displaying 2D Data
PV-WAVE provides routines for plotting data in a variety of ways. These routines
allow general X versus Y plots, contouring, mesh surface plots, perspective
plotting, and data clipping in an extremely flexible manner without requiring you
to write complicated programs. These plotting and graphic routines are designed to
allow easy visualization of data during data analysis.

Optional keyword parameters and system variables allow straightforward custom-
ization of the appearance of the results: (i.e., specification of scaling, axis style,
colors, etc.).

This chapter contains numerous examples of scientific graphics in which one
variable is plotted as a function of another. The procedures that display three-
dimensional data, CONTOUR and SURFACE, are explained in detail in Chapter
5, Displaying 3D Data. Procedures used to display and process images are
discussed in Chapter 6, Displaying Images.

Summary of 2D Plotting and General Graphics Routines
A list of the 2D plotting procedures described in this chapter is found in . In
addition, a summary list of graphics procedures often used with the plotting
procedures is listed.

42 PV-WAVE User’s Guide

Customizing Plots with Keyword Parameters
The plotting procedures are designed to produce acceptable results for most
applications with a minimum amount of effort. The plotting and graphics keyword
parameters and system variables, which are described in allow you to customize
your graphics output. Examples in this chapter show how to use many of the major
keywords and system variables used to modify 2D graphics.

Keyword Correspondence with System Variables

Many of the plotting keyword parameters correspond directly to fields in the
system variables !P, !X, !Y, !Z, or !PDT. When you specify a keyword parameter
name and value in a call, that value affects only the current call — the
corresponding system variable field is not changed. Changing the value of a system
variable field changes the default for that particular parameter and remains in effect
until explicitly changed. The system variables and the corresponding keywords that
are used to modify graphics are described in , and in Chapter 4, System Variables,
in the PV-WAVE Reference.

Example of Changing the Default Color Index

The color index controls the color of text, lines, axes, and data in 2D plots. By
default, the color index is set in the !P.Color field of the !P system variable. This
default value is normally set to the number of available colors minus 1. (If your
system supports 256 colors, !P.Color is set to 255 by default.)

Using the Color Keyword Parameter

You can override this default value at any time by including the Color keyword in
the graphics routine call. For example, to set the color of a plot to color index 12,
enter:

PLOT, X, Y, Color = 12

Because keyword parameters only modify the current function or procedure call,
future plots are not affected.

Changing the !P.Color System Variable

To change the color for all plots produced during the current session, you can
modify !P.Color. For example, to change the default color index to 12, enter:

!P.Color = 12

Three Graphics Coordinate Systems 43

Interpretation of the Color Index

The interpretation of the color index varies among the devices supported by
PV-WAVE. With color video displays, this index selects a color (normally an RGB
triple) stored in a device table. You can control the color selected by each color
index with the TVLCT procedure which loads the device color tables. TVLCT is
described in the PV-WAVE Reference.

Other devices have a fixed color associated with each color index. With plotters,
for example, the correspondence between colors and color index is established by
the order of the pens in the carousel.

Three Graphics Coordinate Systems
You may specify coordinates in data, device, or normal coordinate systems. These
systems are explained in the following sections.

Almost all the graphics procedures will accept parameters in any of these coordi-
nate systems. Most procedures use the data coordinate system by default. Routines
beginning with the letters TV are notable exceptions. They use device coordinates
by default. You can explicitly specify the coordinate system by including one of the
keyword parameters Data, Device, or Normal in the call. For example:

PLOT, x, y, /Normal

Data Coordinate System

The data coordinate system is the system established by the most recent PLOT,
CONTOUR, or SURFACE call. This system usually spans the plot window, the
area bounded by the plot axes, with a range identical to the range of the plotted
data. The system may have two or three dimensions, and may be linear, logarith-
mic, or semi-logarithmic.

Data is the default coordinate system for most graphics procedures.

Device Coordinate System

The device coordinate system is the physical coordinate system of the selected
plotting device. Device coordinates are integers, ranging from (0,0) at the bottom-
left corner, to (Vx – 1, Vy – 1) at the upper-right corner. Vx and Vy are the number of
columns and rows addressable by the device.

44 PV-WAVE User’s Guide

Normal Coordinate System

The normalized coordinate system ranges from (0.0, 0.0) to (1.0, 1.0) over the three
axes.

Coordinate System Conversion

This section describes how PV-WAVE converts from one coordinate system to
another.

The system variables !D, !P, !X, !Y, and !Z contain the information necessary to
convert from one coordinate system to another. The relevant fields of these system
variables are explained below, and formulas are given for conversions to and from
each coordinate system. Three-dimensional coordinates are discussed in Chapter
5, Displaying 3D Data.

In the following discussion, D is a data coordinate, N is a normalized coordinate,
and R is a raw device coordinate.

The fields !D.X_VSize and !D.Y_VSize always contain the size of the visible area
of the currently selected display or drawing surface. Let Vx and Vy represent these
two sizes.

The field !X.S, is a two-element array that contains the parameters of the linear
equation converting data coordinates to normalized coordinates. !X.S(0) is the
intercept, and !X.S(1) is the slope. !X.Type is 0 for a linear x–axis, and is 1 for a
logarithmic x–axis. The y– and z–axes are handled in the same manner, using the
system variables !Y and !Z.

With the above variables defined, the two-dimensional coordinate conversions for
the x coordinate may be written as follows:

Dx = Data coordinate

Nx = Normalized coordinate

Rx = Device coordinate

Vx = Device X size, in device coordinates

Xi = !X.S(i), scaling parameter

Data to Normal conversion

N x

X0 X1Dx+

X0 X1 Dxlog+

=
linear

logarithmic

Drawing X Versus Y Plots 45

Data to Device conversion

Normal to Device conversion Rx = NxVx

Normal to Data conversion

Device to Data conversion

Device to Normal conversion Nx = Rx / Vx

The y– and z–axis coordinates are converted in exactly the same manner, with the
exception that there is no z device coordinate and logarithmic z-axes are not
permitted.

Drawing X Versus Y Plots
This section illustrates the use of the basic x versus y plotting routines, PLOT and
OPLOT.

The PLOT procedure produces linear-linear plots. The procedures PLOT_IO,
PLOT_OI, and PLOT_OO are identical to PLOT, except they produce linear-log,
log-linear, and log-log plots, respectively.

Data from the U.S. Scholastic Aptitude Test (SAT), from the years 1967, 1970, and
from 1975 to 1983, are used in the following examples.

NOTE Variables defined in the following examples are used in later examples in
this chapter.

Rx

V x X0 X1Dx+()

V x X0 X1 Dxlog+()

=
linear

logarithmic

Dx

N x X0–() X1⁄

10 N x X0–() X1⁄

=
linear

logarithmic

Dx

Rx V x⁄ X0–() X1⁄

10 Rx V x⁄ X0–() X1⁄

=
linear

logarithmic

46 PV-WAVE User’s Guide

Producing a Basic XY Plot

The following statements create and initialize the variables VERBM, VERBF,
MATHM, and MATHF, which contain the verbal and math scores for males and
females for the 11 observations:

VERBM = [463, 459, 437, 433, 431, 433, $
431, 428, 430, 431, 430]

VERBF = [468, 461, 431, 430, 427, 425, $
423, 420, 418, 421, 420]

MATHM = [514, 509, 495, 497, 497, 494, $
493, 491, 492, 493, 493]

MATHF = [467, 465, 449, 446, 445, 444, $
443, 443, 443, 443, 445]

A vector in which each element contains the year of the score is constructed with
the statement:

YEAR = [1967, 1970, INDGEN(9) + 1975]

The PLOT procedure, which produces an x versus y plot on a new set of axes,
requires one or two parameters: a vector of y–values, or a vector of x–values fol-
lowed by a vector of y–values. Figure 4-1 is produced using the statement:

PLOT, YEAR, VERBM

Figure 4-1 –Initial 2D plot.

TIP You can abort any of the higher-level graphics procedures (e.g., PLOT,
OPLOT, CONTOUR, and SURFACE) by typing Control-C.

Drawing X Versus Y Plots 47

Scaling the Plot Axes and Adding Titles

The fluctuations in the data are hard to see because the scores range from 428 to
463, and the plot’s y–axis is scaled from 0 to 500. Two factors cause this effect. By
default, PV-WAVE sets the minimum y–axis value of linear plots to 0 if the y data
are all positive. The maximum axis value is automatically set from the maximum
y data value. In addition, PV-WAVE attempts to produce from 3 to 6 tick mark
intervals that are in increments of an integer power of 10 times 2, 2.5, 5, or 10. In
this example, this rounding effect causes the maximum axis value to be 500, rather
than 463.

Using YNozero to Scale the Y–Axis

The YNozero keyword parameter inhibits setting the y–axis minimum to 0 when
given positive, non-zero data. Figure 4-2 illustrates the data plotted using this
keyword. The y–axis now ranges from 420 to 480, because PV-WAVE selected 3
tick mark intervals of 20.

You can make /YNozero the default in subsequent plots by setting bit 4 of
!Y.Style to 1, (!Y.Style = 16).

Other bits in the Style field of the axis system variables !X, !Y, and !Z are described
in the . Briefly: Other bits in the Style field extend the axes, (providing a margin
around the data), suppress the axis and its notation, and suppress the box-style axes
by drawing only a left and bottom axis.

Adding Titles

The Title, XTitle, and YTitle keywords are used to produce axis titles and a main
title in the plot shown in Figure 4-2. This figure was produced with the statement:

PLOT, YEAR, VERBM, /YNozero, $
Title = ’Verbal SAT, Male’, $
XTitle = ’Year’, YTitle = ’Score’

48 PV-WAVE User’s Guide

Figure 4-2 Properly scaled plot with added title annotation

Specifying the Range of the Axes

The range of the x–, y–, or z–axes can be explicitly specified with the XRange,
YRange, and ZRange keyword parameters. The argument of the keyword parameter
is a two-element vector containing the minimum and maximum axis values.

For example, if we wish to constrain the x–axis to the years 1975 to 1983, the fol-
lowing keyword parameter is included in the call to PLOT:

XRange = [1975, 1983]

The effect of the YNozero keyword, explained in the previous section, is identical
to that obtained by specifying the following YRange keyword parameter in the call
to PLOT:

 YRange = [MIN(Y), MAX(Y)]

Specifying Exact Tick Intervals with XStyle = 1

As explained in the previous section, PV-WAVE attempts to produce even tick
intervals, and the axis range selected by PV-WAVE may be slightly larger than that
given with the XRange, YRange, and ZRange keywords. To obtain the exact speci-
fied interval, set the x–axis style parameter to 1 (XStyle = 1).

The call combining all these options is:

PLOT, YEAR, VERBM, /YNozero, $
Title = ’Verbal SAT, Male’, $
XTitle = ’Year’, YTitle = ’Score’, $
XRange = [1975, 1983], /XStyle

Drawing X Versus Y Plots 49

Figure 4-3 illustrates the result.

Figure 4-3 Plot with x–axis range of 1975 – 1983.

Plotting Additional Data on the Same Axes

Additional data may be added to existing plots with the OPLOT procedure. Each
call to PLOT establishes the plot window (the region of the display enclosed by the
axes), the axis types (linear or log), and the scaling. This information is saved in
the system variables !P, !X, and !Y, and used by subsequent calls to OPLOT.

It may be useful to change the color index, linestyle, or line thickness parameters
in each call to OPLOT to distinguish the data sets. For a table describing the line-
style associated with each index, see the description of the !P.Linestyle system
variable in .

Figure 4-4 illustrates a plot showing all four data sets, VERBF, VERBM, MATHF,
and MATHM. Each data set except the first is plotted with a different line style and
is produced by a call to OPLOT.

50 PV-WAVE User’s Guide

Figure 4-4 Overplotting using different line styles.

In this example, an 11-by-4 array called allpts is defined which contains all the
scores for the four categories using the array concatenation operator. Once this
array is defined, the array operators and functions can be applied to the entire data
set, rather than explicitly referencing the particular score.

Figure 4-4 is produced with the statements:

allpts = [[verbf], [verbm], [mathf], [mathm]]

; Make an (n, 4) array containing the four score vectors.

PLOT, year, verbf, YRange=[MIN(allpts), $
MAX(allpts)]

; Plot first graph. Set the y–axis min and max from the min and
; max of all data sets. Default line style is 0. (The title keywords
; have been omitted from this example for clarity.)

FOR i=1, 3 do OPLOT, year, allpts(*, i), Line = i

; Loop for the three remaining scores, varying the line style.

Plotting Date/Time Axes

Using Date/Time functions, you can create Date/Time variables and automatically
plot multiple Date/Time axes. For detailed information on manipulating and
plotting Date/Time data, see Chapter 8, Working with Date/Time Data.

Drawing X Versus Y Plots 51

Annotating Plots

An obvious problem with Figure 4-4 is that it lacks labels describing the different
lines shown. To annotate a plot, select an appropriate font and then use the
XYOUTS procedure.

Selecting Fonts

You can use software or hardware generated fonts to annotate plots. Chapter 10,
Using Fonts explains the difference between these types of fonts and the
advantages and disadvantages of each.

The annotation in Figure 4-5 uses the PostScript Times-Roman font. This is
selected by first setting the default font, !P.Font, to the hardware font index of 0,
and then calling the DEVICE procedure to set the Times-Roman font:

!P.Font = 0

SET_PLOT, ’ps’

DEVICE, /Times

Other PostScript fonts and their bold, italic, oblique and other variants are
described in the PV-WAVE Reference.

Using XYOUTS to Annotate Plots

You can add labels and other annotation to your plots with the XYOUTS proce-
dure. The XYOUTS procedure is used to write graphic text at a given location (X,
Y):

XYOUTS, x, y, ’string’

For a detailed description of XYOUTS and its keywords, see the
PV-WAVE Reference. For other tips on using XYOUTS, see Clipping PV-WAVE
Graphics on page 67.

Figure 4-5 illustrates one method of annotating each graph with its name. The plot
is produced in the same manner as was Figure 4-4, with the exception that the
x-axis range is extended to the year 1990 to allow room for the titles. To accomplish
this, the keyword parameter XRange = [1967, 1990] is added to the call to
PLOT. A string vector, NAMES, containing the names of each score is also defined.
As noted in the previous section, the PostScript Times-Roman font was selected for
this example.

The annotation in Figure 4-5 is produced using the statements:

names = [’Female Verbal’, ’Male Verbal’, $
’Female Math’, ’Male Math’]

; Vector containing the name of each score.

52 PV-WAVE User’s Guide

n1 = N_ELEMENTS(year) - 1

; Index of last point.

FOR i=0,3 do XYOUTS, 1984, allpts(n1,i), names(i)

; Append the title of each graph on the right.

Figure 4-5 Example of annotating each line. The font used is the hardware-generated Post-
Script Times-Roman font.

Plotting in Histogram Mode

You can produce a histogram-style plot by setting the Psym keyword to 10 in the
PLOT procedure call:

Psym = 10

This connects data points with vertical and horizontal lines, producing the
histogram.

Figure 4-6 illustrates this by comparing the distribution of the normally distributed
random number function (RANDOMN), to the theoretical normal distribution:

This figure is produced using the following statements:

X = FINDGEN(200) / 20. - 5.

; Generate 200 values ranging from –5 to 5.

Y = 1 / SQRT(2. * !PI) * EXP(-X^2 / 2) *(10. / 200)

; Theoretical normal distribution, integral scaled to one.

H = HISTOGRAM(RANDOMN(Seed, 2000), $
BINSIZE = 0.4, min = -5., max = 5.)/2000.

2π() 1 2⁄– e x2 2⁄–

Drawing X Versus Y Plots 53

; Approximate a normal distribution with RANDOM and then
; form the histogram.

PLOT, FINDGEN(26) * 0.4 - 4.8, H, PSYM = 10

; Plot the approximation using “histogram mode”.

OPLOT, X, Y*8.

; Overplot the actual distribution (see Figure 4-6).

Figure 4-6 Plotting in histogram mode.

Using Different Marker Symbols

Each data point may be marked with a symbol and/or connected with lines. The
value of the keyword parameter Psym selects the marker symbol. Psym is described
in detail in Chapter 3, Graphics and Plotting Keywords, in the PV-WAVE
Reference, .

For example, a value of 1 marks each data point with the plus sign, 2 is an asterisk,
etc. Setting Psym to minus the symbol number marks the points with a symbol and
connects them with lines. For example, a value of –1 marks points with a plus sign
and connects them with lines.

Note also that setting Psym to a value of 10 produces histogram-style plots, as
described in the previous section.

Frequently, when data points are plotted against the results of a fit or model,
symbols are used to mark the data points while the model is plotted using a line.
Figure 4-7 illustrates this, fitting the male verbal scores to a quadratic function of
the year. The POLY_FIT function is used to calculate the quadratic. The statements
used to construct this plot are:

COEFF = POLY_FIT(YEAR, VERBM, 2, YFIT)

54 PV-WAVE User’s Guide

; Use the POLY_FIT function to obtain a quadratic fit.

PLOT, YEAR, VERBM, /YNozero, Psym = 4, $
Title = ’Quadratic Fit’, $
XTitle = ’Year’, YTitle = ’SAT Score’

; Plot the original data points with Psym = 4, for
; diamonds (Figure 4-7 (a)).

OPLOT, YEAR, YFIT

; Overplot the smooth curve using a plain line (Figure 4-7 (b)).

Figure 4-7 (a) Plotting with predefined marker symbols, and (b) with user-defined symbols.

Defining Your Own Marker Symbols

The USERSYM procedure allows you to define your own symbols by supplying
the coordinates of the lines used to draw the symbol. The symbol you define may
be drawn using lines, or it may be filled using the polygon filling operator.
USERSYM accepts two vector parameters: a vector of x–values and a vector of
y-values.

The coordinate system you use to define the symbol’s shape is centered on each
data point and each unit is approximately the size of a character. For example, to
define the simplest symbol, a one-character wide dash, centered over the data point:

USERSYM, [-.5,.5],[0,0]

The color and line thickness used to draw the symbols are also optional keyword
parameters of USERSYM.

Figure 4-7 (b) illustrates the use of USERSYM to define a new symbol, a filled
circle. It is produced in exactly the same manner as the example in the previous
section, with the exception of the addition of the following statements that define
the marker symbol and use it.

(a) (b)

Drawing X Versus Y Plots 55

A = FINDGEN(16) * (!Pi * 2 / 16.)

; Make a vector of 16 points, ai = 2πi / 16.

USERSYM, COS(A), SIN(A), /Fill

; Define the symbol to be a unit circle, with 16 points, set the filled flag.

PLOT, YEAR, VERBM, /YNozero, Psym = 8, ...

; As in the previous section, but use symbol index 8 to select user-defined symbols.

Using Color and Pattern to Highlight Plots

Many scientific graphs use region filling to highlight the difference between two or
more curves (i.e., to illustrate boundaries, etc.). Given a list of vertices, the
procedure POLYFILL fills the interior of an arbitrary polygon. The interior of the
polygon may be filled with a solid color or, with some devices, a user-defined
pattern contained in a rectangular array.

Windows USERS The Pattern keyword is not available for the POLYFILL
procedure.

Figure 4-8 illustrates a simple example of polygon filling by filling the region under
the male math scores with a color index of 75% the maximum, and then filling the
region under the male verbal scores with a 50% of maximum index. Because the
male math scores are always higher than the verbal, the graph appears as two
distinct regions.

Figure 4-8 Filling regions using POLYFILL.

Male SAT Scores

1965 1970 1975 1980 1985
420

440

460

480

500

520

Verbal

Math

56 PV-WAVE User’s Guide

The following discussion describes the program that produced Figure 4-8. First, a
plot axis is drawn with no data, using the Nodata keyword. The minimum and max-
imum y–values are directly specified with the YRange keyword. Because the y–axis
range does not always exactly include the specified interval (see Scaling the Plot
Axes and Adding Titles on page 47), the variable MINVAL, is set to the current
y-axis minimum, !Y.Crange(0). Next, the upper math score region is shaded with a
polygon containing the vertices of the math scores, preceded and followed by
points on the x–axis, (YEAR(0), MINVAL), and (YEAR(n – 1), MINVAL).

The polygon for the verbal scores is drawn using the same method with a different
color. Finally, the XYOUTS procedure is used to annotate the two regions.

!P.Font = 0

; Use hardware fonts.

DEVICE, /Helvetica

; Set font to Helvetica.

PLOT, year, mathm, YRange = [MIN(verbm), $
MAX(mathm)], /Nodata, Title = $
’Male SAT Scores’

; Draw axes, no data, set the range.

pxval = [year(0), year, year(n1)]

; Make a vector of x–values for the polygon, by duplicating the first
; and last points.

minval = !Y.Crange(0)

; Get y–value along bottom x–axis.

POLYFILL, pxval, [minval, mathm, minval], $
COL = 0.75 * !D.N_Colors

; Make a polygon by extending the edges of the math score
; down to the x–axis.

POLYFILL, pxval, [minval, verbm, minval], COL = 0.50 * !D.N_Colors

; Same with verbal.

XYOUTS, 1968, 430, ’Verbal’, Size = 2

; Label the polygons.

XYOUTS, 1968, 490, ’Math’, Size = 2

Drawing Bar Charts

Bar charts are used in business-style graphics and are useful in comparing a small
number of measurements within a few discrete data sets. PV-WAVE can produce
many types of business-style plots with a little effort.

Drawing X Versus Y Plots 57

The following example produces a bar-style chart showing the four SAT scores as
boxes of differing colors or shading. The program used to draw Figure 4-9 is shown
below and annotated. A procedure called BOX is defined which draws a box given
the coordinates of two diagonal corners.

Figure 4-9 Bar chart drawn with POLYFILL.

As in the previous example, the PLOT procedure is used to draw the axes and
establish the scaling using the Nodata keyword.

PRO BOX, x0, y0, x1, y1, color

; Draw a box, using polyfill, whose corners are (x0, y0), and (x1,y1).

POLYFILL, [x0,x0,x1,x1], [y0,y1,y1,y0], $
col = color

END

colors = 64 * INDGEN(4) + 32

; Make a vector of colors for each score.

PLOT, year, mathm, YRange = [MIN(allpts), $
MAX(allpts)], Title = ’SAT Scores’, $
/Nodata, XRange = [year(0), 1990]

; Use PLOT to draw the axes and set the scaling.
; Draw no data points, explicitly set the x– and y–ranges.

minval = !Y.Crange(0)

; Get the y–value of the bottom x–axis.

del = 1./5.

; Width of bars in data units.

FOR iscore = 0,3 DO BEGIN

; Loop for each score.

58 PV-WAVE User’s Guide

yannot = minval + 20 *(iscore+1)

; Annotation of y–value. Vertical separation is 20 data units.

XYOUTS, 1984, yannot, names(iscore)

; Label for each bar.

BOX, 1984, yannot-6, 1988, yannot-2, $
colors(iscore)

; Bar for annotation.

xoff = iscore * del - 2 * del

; Vertical bar x–offset for each score.

FOR iyr = 0, N_ELEMENTS(year)-1 DO $
BOX, year(iyr)+xoff, minval, year(iyr)$
+ xoff+del, allpts(iyr, iscore), $
colors(iscore)

; Draw a vertical box for each year's score.

ENDFOR

Controlling Tick Marks

You have almost complete control over the number, style, placement, and annota-
tion of the tick marks. The following plotting keywords are used to control tick
marks:

For detailed descriptions of these keywords, see ,.

Example 1: Specifying Tick Labels and Values

Figure 4-10 is a bar chart illustrating the direct specification of the x–axis tick val-
ues, number of ticks, and tick names. Building upon the BOX program described
in the previous section, this program shows each of the four scores for the year
1967, the first year in the data. The BOX procedure is used to draw a rectangle for
each score. Using the same data and variables from that example, the program for
specifying tick labels and values is as follows.

xval = FINDGEN(4)/5. + .2

Gridstyle XTicklen YTickformat ZMinor

Tickformat XTickname YTicklen ZTickformat

Ticklen XTicks YTickname ZTicklen

XGridstyle XTickv YTicks ZTickname

XMinor YGridstyle YTickv ZTicks

XTickformat YMinor ZGridstyle ZTickv

Drawing X Versus Y Plots 59

; Tick x–values, 0.2, 0.4, 0.6, 0.8.

yval = [verbf(0), verbm(0), mathf(0), mathm(0)]

; Make a vector of scores from the first year,
; corresponding to the names vector from the previous example.

PLOT, xval, yval, /YNozero, XRange = [0,1],$
XTickv = xval, XTicks = 3, $
XTickname = names, /Nodata, Title = $
’SAT Scores, 1967’

; Make the axes with no data. Force x–range to [0,1],
; centering xval, which also contains the tick values. Force
; three tick intervals making four tick marks. Specify the
; tick names from the names vector.

FOR i=0, 3 DO BOX, xval(i) - .08, $
!Y.Crange(0), xval(i)+0.08, yval(i), 128

; Draw the boxes, centered over the tick marks.
; !Y.Crange(0) is the y–value of the bottom x–axis.

Figure 4-10 Controlling x–axis tick marks and their annotation.

Example 2: Specifying Tick Lengths

Figure 4-11 illustrates the effects of changing the Ticklen keyword. The left plot
shows a full grid produced with tick mark lengths of 0.5. The right plot shows out-
ward-extending tick marks produced by setting the Ticklen keyword to –0.02.
Outward extending ticks are useful in that they do not obscure the data inside the
window. These two plots were produced with the following code:

precip = [...]

; Define 12 monthly precipitation values.

temp = [...]

; Define 12 monthly average temperature.

60 PV-WAVE User’s Guide

month = [’Ja’, ’Fe’, ’Ma’, ’Ap’, ’Ma’, $
’Ju’, ’Ju’, ’Au’, ’Se’, ’Oc’, ’No’, ’De’]

; Define names of months.

day = FINDGEN(12) * 30 + 15

; Vector containing the approximate day number of the middle of each month.

PLOT, day, precip, XTicks = 11, XTickname = $
month, Ticklen = 0.5, XTickv = day, $
Title = ’Average Monthly Precipitation’, $ XTitle = ’Inches’,

Subtitle = ’Denver’

; Plot, setting tick mark length to full, and setting the
; number, position and labels of the ticks.

PLOT, day, precip, XTicks = 11,XTickname = $
month, Ticklen = -0.02, XTickv = day, $
Title = ’Average Monthly Precipitation’, $
XTitle = ’Inches’, Subtitle = ’Denver’

; As above, setting tick mark length for outside ticks.

TIP Use the Gridstyle, XGridstyle, YGridstyle, and ZGridstyle keywords to change
the linestyle of tick marks from solid to dashed, dotted, or other styles. One use is
to create a dotted or dashed grid on the plot region. To do this, first set the Ticklen
keyword to 0.5, and then set the Gridstyle keyword to the value of the linestyle you
want to use. For more information on using the Gridstyle keywords, see , Volume 3.

Figure 4-11 Full grid produced with tick marks (right) and outward-extending tick marks
(left).

Example 3: Specifying Tick Label Formats

The XTickformat, YTickformat, and ZTickformat keywords let you change the
default format of tick labels. These keywords use theF (floating-point), I (integer),
and E (scientific notation) format specifiers to specify the format of the tick labels.

Drawing X Versus Y Plots 61

These format specifiers are similar to the ones used in FORTRAN and are dis-
cussed in the PV-WAVE Reference.

For example:

PLOT, mydata, XTickformat=’(F5.2)’

The resulting plot’s tick labels are formatted with a total width of five characters
and carried to two decimal places. As expected, the width field expands automati-
cally to accommodate larger values. For example, the x–axis tick labels for this plot
might look like this:

40.00 400.00 4000.00 40000.00

You can easily reformat the labels in scientific notation using theE format specifier.
For example:

PLOT_OO, mydata, YTickformat=’(E6.2)’

The resulting y–axis tick labels for this plot might look like this:

1.00e-08 1.00e-06 1.00e-04 1.00e-02

Like many of the keywords used with the plotting procedures, corresponding sys-
tem variables allow you to change the normal defaults. The corresponding system
variables for the Tickformat keywords are: !X.Tickformat, !Y.Tickformat, and
!Z.Tickformat. The system variable !P.Tickformat lets you set the tick label format
for all three axes.

NOTE Only the I (integer), F (floating-point), and E (scientific notation) format
specifiers can be used with the Tickformat keywords. Also, you cannot place a
quoted string inside a tick format. For example, (’<’, F5.2, ’>’) is an
invalid Tickformat specification.

Drawing Multiple Plots on a Page

Plots may be grouped on the display or page in the horizontal and/or vertical direc-
tions using the !P.Multi system variable field. PV-WAVE sets the plot window to
produce the given number of plots on each page and moves the window to a new
sector at the beginning of each plot. If the page is full, it is first erased. If more than
two rows or columns of plots are produced, PV-WAVE decreases the character size
by a factor of 2.

!P.Multi controls the output of multiple plots and is an integer vector in which:

• !P.Multi(0) — The number of empty sectors remaining on the page. The
display is erased if this field is 0 when a new plot is begun.

62 PV-WAVE User’s Guide

• !P.Multi(1) — The number of plots across the page.

• !P.Multi(2) — The number of plots per page in the vertical direction.

For example, to stack two plots vertically on each page specify the following value
for !P.Multi.

!P.Multi = [0,1,2]

Note that the first element, !P.Multi(0), is set to zero to cause the next plot to begin
a new page. To make four plots per page, with two columns and two rows:

!P.Multi = [0,2,2]

Figure 4-12 illustrates the two rows and two columns format. Use the following
command to reset the display to the default setting of one plot per page.

!P.Multi = 0

Figure 4-12 Multiple plots per page.

Drawing X Versus Y Plots 63

Plotting with Logarithmic Scaling

The XType, YType, and ZType keywords can be used with the PLOT routine to get
any combination of linear and logarithmic axes. In addition, logarithmic scaling
may be achieved by calling PLOT_IO (linear x–axis, log y–axis), PLOT_OI (log x,
linear y), or PLOT_OO (log x, log y). The OPLOT procedure uses the same scaling
and transformation as did the most recent plot.

Figure 4-13 illustrates the use of PLOT_IO to make a linear-log plot. It is produced
using the following statements:

X = FLTARR(256)

; Create data array.

X(80:120) = 1

; Make a step function.

FREQ = FINDGEN(256)

FREQ = FREQ < (256-FREQ)

; Make a filter symmetrical about x = 64.

FIL = 1. / (1+(FREQ / 20) ^2)

; A 2nd order Butterworth, with acutoff frequency = 20.

PLOT_IO, FREQ, ABS(FFT(X,1)), XTitle = $
’Relative Frequency’, YTitle = $
’Power’, XStyle = 1

; Plot with a logarithmic x–axis. Use exact axis range.

OPLOT, FREQ, FIL

Figure 4-13 Logarithmic scaling of a second order Butterworth filter.

64 PV-WAVE User’s Guide

Specifying the Location of the Plot

The plot data window is the region of the page or screen enclosed by the axes. The
plot region is the box enclosing the plot data window and the titles and tick
annotation. Figure 4-14 illustrates the relationship of the plot data window, plot
region, and the entire device area (or window if using a windowing device).

Figure 4-14 Relationship of the plot data window, plot region, and the device area.

These areas are determined by the following system variables and keyword
parameters, in order of decreasing precedence. Each of these keywords and system
variables are described in Chapter 3, Graphics and Plotting Keywords, in the
PV-WAVE Referenceand .

• Position keyword

• !P.Position system variable

• !P.Region system variable

• !P.Multi system variable

• XMargin, YMargin, and ZMargin keywords

• !X.Margin, !Y.Margin, and !Z.Margin system variables

Drawing X Versus Y Plots 65

Drawing Additional Axes on Plots

The AXIS procedure draws and annotates an axis. It optionally saves the scaling
established by the axis for use by subsequent graphics procedures. It may be used
to add additional axes to plots, or to draw axes at a specified position.

The AXIS procedure accepts the set of plotting keyword parameters that govern the
scaling and appearance of the axes. In addition, the keyword parameters XAxis,
YAxis, and ZAxis specify the orientation and position (if no position coordinates are
present), of the axis. The values of these parameters are: 0 for the bottom or left
axis, and 1 for the top or right. The tick marks and their annotation extend away
from the plot window. For example, specify YAXIS = 1 to draw a y–axis on the
right of the window.

The optional keyword parameter Save saves the data-scaling parameters estab-
lished for the axis in the appropriate axis system variable, !X, !Y, or !Z.

The call to AXIS is:

AXIS [[, x, y], z]

where x, y, and optionally z specify the coordinates of the axis. By including the
appropriate keyword parameter (Device, Normal, or Data) you can specify a
coordinate system. The coordinate corresponding to the axis direction is ignored
when specifying an x–axis, the x coordinate parameter is ignored, but must be
present if there is a y coordinate.

Drawing Additional Axes Example

Figure 4-15 illustrates using AXIS to draw axes with a different scale, opposite the
main x– and y–axis.

Figure 4-15 Plot containing axes with different scales, created with the AXIS procedure.

66 PV-WAVE User’s Guide

The plot is produced using PLOT with the bottom and left axes annotated and
scaled in units of days and degrees Fahrenheit, respectively. The XMargin and
YMargin keyword parameters are specified to allow additional room around the
plot window for the new axes. The keyword parameters XStyle = 8 and
YStyle = 8 inhibit drawing the top and right axes.

Next, the AXIS procedure is called to draw the top axis, (XAxis = 1), labeled in
months. Eleven tick intervals, with 12 tick marks are drawn. Each monthly tick
mark’s x–value is the day of the year of approximately the middle of the month.
Tick mark names come from the MONTH string array.

The right y–axis, YAxis = 1, is drawn in the same manner. The new y–axis range
is set by converting the original y–axis minimum and maximum values, saved by
PLOT in !Y.Crange, from Fahrenheit to Celsius, using the formula C = 5(F – 32) /
9. The keyword parameter YStyle = 1 forces the y–axis range to match the
given range exactly. The commands are:

PLOT, day, temp, /YNozero, Subtitle = $
’Denver Average Temperature’, $
XTitle = ’Day of Year’, YTitle = $
’Degrees Fahrenheit’, XStyle = 8, $
YStyle = 8, XMargin = [8,8], $
YMargin = [4,4]

; Plot the data, omitting the right and top axes.

AXIS, XAxis = 1, XTicks = 11, XTickv = day, $
XTickname = month, XTitle = ’Month’, $
XCharsize = 0.7

; Draw the top x–axis, supplying labels, etc. Make the
; characters smaller so they will fit.

AXIS, YAxis = 1, YRange = $
(!Y.Crange–32)*5. /9., YStyle = 1, $
YTitle = ’Degrees Celsius’

; Draw the right y–axis. Scale the current y–axis minimum
; values from Fahrenheit to Celsius, and make them the new
; min and max values. Set YStyle to 1 to make the axis exact.

Drawing Polar Plots

The PLOT procedure converts its coordinates from cartesian to polar coordinates
when plotting if the Polar keyword parameter is set. The first parameter to plot is
the radius, R, and the second is θ, expressed in radians. Polar plots are produced
using the standard axis and label styles — with box axes enclosing the plot area.

Figure 4-16 illustrates using AXIS to draw centered axes, dividing the plot window
into the four quadrants centered about the origin. This method uses PLOT to plot

Drawing X Versus Y Plots 67

the polar data and to establish the coordinate scaling, but suppresses the axes. Next,
two calls to AXIS add the x– and y–axes, drawn through data coordinate (0,0):

r = FINDGEN(100)

; Make a radius vector.

theta = r/5

; And a theta vector.

PLOT, r, theta, Subtitle = ’Polar Plot’, $
XStyle = 4, YStyle = 4, /Polar

; Plot the data, suppressing the axes by setting their styles to 4.

AXIS, XAxis = 0, 0, 0

AXIS, YAxis = 0, 0, 0

; Draw the x– and y–axes through (0,0).

Figure 4-16 A polar plot.

Clipping PV-WAVE Graphics

Clipping removes data from a specified region of the display device. Keywords
provided with the PV-WAVE graphics commands let you specify how clipping is
done.

The clipping concept can be described in terms of a “clipping rectangle.” Graphics
that fall inside the clipping rectangle are displayed; graphics that fall outside the
rectangle are not — they are clipped.

For example, the following commands produce the graphics shown in Figure 4-17:

PLOT, HANNING(100,100)

; Produces the graphic on the left (a). Data is not clipped.

PLOT, HANNING(100,100), Clip=[0,0, 5000,1]

68 PV-WAVE User’s Guide

; Produces the graphic on the right (b). Data is clipped outside the
; clipping rectangle, which is defined with the Clip keyword.

Figure 4-17 The graphic in (a) is displayed without clipping. The same data is plotted in (b),
but clipping is used so that only half of the data is shown. (The dashed line shows the clip-
ping rectangle.)

Defining a Clipping Rectangle

The following illustration shows a plot that is clipped. The dashed line shows the
boundary of the clipping rectangle. (This dashed line does not appear on the actual
PV-WAVE plot.) Note that all of the data that falls outside this rectangle are
clipped. The data that fall inside the rectangle are displayed normally.

The Clip keyword is used to define the clipping rectangle as follows:

PLOT, INDGEN(100), Clip=[25,25,75,75]

The Clip keyword specifies the lower-left and upper-right corners of a rectangle:

Clip = [X0, Y0, X1, Y1]

By default, the Clip keyword accepts data coordinates.

(a) not clipped (b) clipped

clipping
rectangle

Drawing X Versus Y Plots 69

Figure 4-18 Graphics outside the boundary of the clipping rectangle are not displayed —
they are clipped.

The following illustration shows the same plot with a different clipping region
defined:

PLOT, INDGEN(100), Clip=[50,50,100,100]

Figure 4-19 Another clipping rectangle defined by the Clip keyword.

The next illustration shows the same plot once again, but this time the clipping rect-
angle is defined in such a way that none of the data are displayed.

PLOT, INDGEN(100), Clip=[20,60, 40,90]

(25, 25)

(75, 75)

Clipping Rectangle

(50, 50)

(100, 100)

Clipping Rectangle

70 PV-WAVE User’s Guide

Figure 4-20 The clipping rectangle is defined so that none of the data are displayed. All of
the data fall outside the clipping rectangle.

How is Clipping Controlled in PV-WAVE?

The following graphics keywords and system variables control clipping. They are
listed here in their order of precedence. The first keyword in the list, NoClip, takes
precedence over all the other keywords and system variables below it, and so on.

1. NoClip (graphics keyword)

2. Clip (graphics keyword)

3. PClip (graphics keyword)

4. !P.NoClip (system variable)

5. !P.Clip (system variable)

The following sections explain how these keywords and system variables are used
to control clipping of PV-WAVE graphics.

For more information on these keywords and system variables, see and .

Which PV-WAVE Commands Use Clipping

The graphics procedures that use clipping are:

• CONTOUR (see Chapter 5, Displaying 3D Data)

• SURFACE (see Chapter 5, Displaying 3D Data)

• PLOT

(20, 60)

(40, 90)

Drawing X Versus Y Plots 71

• OPLOT

• POLYFILL

• PLOTS

• XYOUTS

The way clipping works depends on the graphics command you are using. The
table in the next section breaks these commands into three groupings. Each
grouping handles clipping in the same way. That is, each group has the same
clipping defaults, accepts the same clipping keywords, and reads the same clipping
system variables.

Notes on the Keywords and System Variables

The Clip keyword takes data coordinates by default. To clip in normal or device
coordinates, add /Device or /Normal to the graphics command.

When you call PLOT, the value of !P.Clip is set to a default value. This value
depends on the current device. Setting the Clip keyword has no effect on !P.Clip.

The default clipping rectangle for OPLOT is defined by the value of !P.Clip. !P.Clip
is set by the call to PLOT, CONTOUR, or SURFACE.

Since clipping is disabled for PLOTS, POLYFILL, and XYOUTS by default, the
NoClip keyword has little importance for these commands.

Changing the value of the !P.NoClip system variable has no effect on PLOTS,
POLYFILL, and XYOUTS.

Clipping controls are summarized in the following table:

Clipping Controls in PV-WAVE

Command Default Clipping Clipping Options

CONTOUR (*),
PLOT,
SURFACE (*)

!P.Clip is set by these
commands. It defines the
default clipping rectangle,
which is usually bounded by
the coordinate axes.

Use the Clip keyword to specify a
clipping rectangle within default
clipping region.

Set the NoClip keyword to override
Clip and explicitly enforce the default
condition.

PClip is not a valid keyword for these
commands. !P.Clip, and !P.NoClip are
not recognized.

72 PV-WAVE User’s Guide

Examples

The following examples illustrate how clipping works for specific combinations of
two-dimensional plotting routines, and the clipping keywords and system
variables.

OPLOT Default Clipping

In this example, PLOT plots a solid line, then OPLOT plots a dotted line. The dot-
ted line is clipped at the boundary of the axes (the default clipping rectangle defined
in the !P.Clip system variable).

PLOT, INDGEN(100)

OPLOT, INDGEN(100)+10, Linestyle=2

Figure 4-21 shows the default clipping of the OPLOT line at the at the boundaries
of the axes set up for the PLOT line.

OPLOT The clipping rectangle is
defined by the coordinate axes
(the plot data region).

Use the Clip keyword to specify a
clipping rectangle.

Disable clipping altogether by setting
/NoClip or !P.NoClip=1. If
you disable clipping, then data that
falls outside the region bounded by
the coordinate axes is not clipped.

PClip is not a valid keyword for
OPLOT.

PLOTS,
XYOUTS,
POLYFILL

Clipping is disabled. Use the Clip keyword to specify a
clipping rectangle.

Set the PClip keyword to override the
default condition. PClip causes the
value of !P.Clip to be used to define
the clipping rectangle (usually the
area bounded by the coordinate axes).

* Denotes a 3D Routine, see Chapter 5, Displaying 3D Data.

Clipping Controls in PV-WAVE (Continued)

Command Default Clipping Clipping Options

Drawing X Versus Y Plots 73

Figure 4-21 By default, graphics plotted with OPLOT are clipped by the boundary of the
coordinate axes.

OPLOT with NoClip Keyword

In the next example, the NoClip keyword is added to the OPLOT command. This
overrides the default clipping rectangle defined by !P.Clip, and the dotted line
extends beyond the boundary of the coordinate axes.

PLOT, INDGEN(100)

OPLOT, INDGEN(100)+10, LineStyle=2, /NoClip

The effect of specifying the NoClip keyword in an OPLOT command is shown in
Figure 4-22.

74 PV-WAVE User’s Guide

Figure 4-22 When the NoClip keyword is specified, the overplotted data is not constrained
by default clipping rectangle (the region bounded by the coordinate axes).

OPLOT with Clip Keyword

Finally, the Clip keyword is used with OPLOT, and only the dotted line is clipped.

PLOT, INDGEN(100)

OPLOT, INDGEN(100) + 10, LineStyle = 2, $
Clip = [25, 25, 75, 75]

Figure 4-23 shows the graphic with only the OPLOT line clipped.

Drawing X Versus Y Plots 75

Figure 4-23 The Clip keyword is used to specify a clipping rectangle for OPLOT. Only the
OPLOT data is clipped.

XYOUTS Default Clipping

When PLOTS, POLYFILL, or XYOUTS is called, clipping is disabled by default
(that is, the value of the !P.Clip system variable is ignored). In this example, the text
drawn by XYOUTS extends well beyond the coordinate axes into the device
region.

PLOT, INDGEN(100)

XYOUTS, 60, 40, ’This is a Clipping Demonstration’

Figure 4-24 shows the result of the code. Note that the text specified by the
XYOUTS procedure is not affected by any axis-boundary default clipping.

76 PV-WAVE User’s Guide

Figure 4-24 By default, clipping is disabled for PLOTS, POLYFILL, and XYOUTS. Here the
text extends well past the default clipping region bounded by the coordinate axes.

XYOUTS with PClip Keyword

In the next example, the PClip keyword is used. This keyword overrides the default
clipping condition for XYOUTS, PLOTS, and POLYFILL. PClip causes the value
of !P.Clip to be recognized for these commands, and graphics (or text) are clipped
at the boundary of the coordinate axes.

PLOT, INDGEN(100)

XYOUTS, 60,40, ’This is a Clipping Demonstration’, /PClip

By using the PClip keyword with XYOUTS, the text is contained within the coor-
dinate boundaries of the graphic as shown in Figure 4-25.

Drawing X Versus Y Plots 77

Figure 4-25 With the PClip keyword set, XYOUTS uses the value of the system variable
!P.Clip as its clipping rectangle. In this case, !P.Clip was set by the PLOT command to the
boundary of the coordinate axes.

XYOUTS with Clip Keyword

Finally, the Clip keyword is used with a XYOUTS. Clip works the same way with
all graphics functions — it defines a clipping rectangle within the plot data region.
In this example, the text drawn by XYOUTS is clipped everywhere outside the
clipping rectangle.

PLOT, INDGEN(100)

XYOUTS, 60,40, Clip=[40,20,80,80], $
’This is a Clipping Demonstration’

Figure 4-26 demonstrates the ability to clip the XYOUTS procedure text within the
coordinate boundaries of the graphic using the Clip keyword.

78 PV-WAVE User’s Guide

Figure 4-26 In this example, the Clip keyword is used with XYOUTS to specify a clipping
rectangle. Only the text is clipped; the data is unaffected.

Getting Input from the Cursor
The CURSOR procedure reads the position of the graphics cursor of the current
graphics device. It enables the graphic cursor on the device, optionally waits for the
user to position it and press a mouse button to terminate the operation (or type a
character if the device has no mouse), and then reports the cursor position.

The form of a call to CURSOR, where x and y are output variables that hold the x
and y position of the cursor, and wait specifies when CURSOR returns is:

CURSOR, x, y [, wait]

For detailed information on the CURSOR procedure, its parameters and optional
keywords, see the description in the PV-WAVE Reference.

The following code lets you draw lines between points marked with the left or mid-
dle mouse button. Press the right mouse button to exit the routine.
CURSOR, X, Y, /Normal, /Down

; Get the initial point in normalized coordinates.
WHILE (!ERR NE 4) DO BEGIN

; Repeat until the right button is pressed.

Clipping
Rectangle

Getting Input from the Cursor 79

CURSOR, X1, Y1, /Normal, /Down

; Get the second point.
PLOTS, [X, X1], [Y, Y1], /Normal

; Draw the line.
X = X1 & Y = Y1

; Make the current second point be the new first.
ENDWHILE

For another example, the following simple procedure can be used to label plots
using the cursor to position the text:
PRO ANNOTATE, TEXT

; Text is the string to be written on the screen.
PRINT, ’Use the mouse to mark the’ + ’ text starting point:’

; Ask the user to mark the position.
CURSOR, X, Y, /Normal, /Down

; Get the cursor position after any button press.
XYOUTS, X, Y, TEXT, /Normal, /NoClip

; Write the text at the specified position. Using
; the NoClip keyword ensures that the text will appear
; even if it is outside of the plotting region.

END

To place the annotation on a device with an interactive pointer, call this procedure
with the command:
ANNOTATE, ’Text for label’

Then move the mouse to the desired spot and press the left button.

80 PV-WAVE User’s Guide

81

CHAPTER

5

Displaying 3D Data
This chapter shows how to display graphic representations of three-dimensional
data. The two main procedures for doing this are CONTOUR and SURFACE. Pro-
cedures for displaying data as an image, another type of three-dimensional data
representation, are discussed in Chapter 6, Displaying Images. The 3D plotting
procedures include:

CONTOUR, z [, x, y]
; Draws contour plots.

CONTOUR2, z [, x, y]
; Draws contour plots.

SURFACE, z [, x, y]
; Draws 3D surface plots.

SHADE_SURF, z [, x, y]
; Draws shaded 3D surface plots.

CONTOUR, CONTOUR2, and SURFACE use line graphics to depict the value of
a two-dimensional array. As their names imply, CONTOUR and CONTOUR2
draw contour plots. SURFACE depicts the surface created by interpreting each
array element as an elevation. SURFACE projects this three-dimensional surface,
after an arbitrary rotation about the x– and z–axis, into two dimensions. It then con-
nects each point with its neighbors using hidden line removal.

Almost all of the information concerning coordinate systems, keyword parameters,
and system variables that are discussed in Chapter 4, Displaying 2D Data, also
apply to CONTOUR, CONTOUR2, and SURFACE. The keywords and system
variables discussed in this chapter are described in detail in the PV-WAVE
Reference.

82 PV-WAVE User’s Guide

Differences Between CONTOUR and CONTOUR2
CONTOUR2 enhances PV-WAVE’s contouring capabilities by adding scattered
data plotting and sophisticated curve smoothing to produce more realistic contour
lines than CONTOUR. These advantages are especially noticeable in smaller data
sets.

When to Use CONTOUR2

• Use CONTOUR2 to plot 3D scattered data. Note that CONTOUR2 plots rect-
angular and irregularly gridded data using the same curve smoothing algorithm
that it uses for scattered data.

• CONTOUR2 produces more “realistic” contours, especially for sparse data
sets.

• CONTOUR2’s Fill keyword simplifies the procedure for creating filled
contours.

When to Use CONTOUR

• Because CONTOUR2’s curve smoothing is computationally intensive, con-
sider using CONTOUR if a shorter computing time is important. Remember
that whenever you use CONTOUR, your data must define either a rectangular
or curvilinear coordinate system.

When to Use either CONTOUR or CONTOUR2

• For regular or irregularly gridded data, you can use either the CONTOUR or
CONTOUR2.

Drawing Contour Plots with the CONTOUR Procedure

NOTE The following sections describe how to use the CONTOUR procedure;
however, most of the information applies to CONTOUR2 as well. The primary dif-
ferences between CONTOUR and CONTOUR2 are listed in the previous section.
For detailed information on these procedures, see the PV-WAVE Reference.

The CONTOUR procedures draw contour plots from data stored in a rectangular
array. In their simplest form, these procedures make a contour plot given a two-
dimensional array of z values. In more complicated forms, CONTOUR accept, in

Drawing Contour Plots with the CONTOUR Procedure 83

addition to z values, arrays containing the x and y locations of each column, row, or
point, plus many keyword parameters. In more sophisticated applications, the out-
put of CONTOUR may be projected from three dimensions to two dimensions,
superimposed over an image, or combined with the output of SURFACE.

Basic Usage

The simplest call to CONTOUR is:

CONTOUR, z

This call labels the x– and y–axes with the subscript along each dimension. For
example, when contouring a 10-by-20 array, the x–axis ranges from 0 to 9, and the
y–axis from 0 to 19.

You can explicitly specify the x and y locations of each cell with the call:

CONTOUR, z, x, y

The x and y arrays may be either vectors or two-dimensional arrays of the same size
as z. If they are vectors, the element Zi,j has a coordinate location of (Xi, Yj). Other-
wise, if the x and y arrays are two-dimensional, the element Zi,j has the location (Xi,j,
Yi,j) Thus, vectors should be used if the x location of Zi,j does not depend upon j and
the y location of Zi,j does not depend upon i.

Dimensions must be compatible. In the one-dimensional case, x must have a
dimension equal to the number of columns in z, and y must have a dimension equal
to the number of rows in z. In the two-dimensional case, all three arrays must have
the same dimensions.

PV-WAVE uses linear interpolation to determine the x and y locations of the
contour lines that pass between grid elements. The cells must be regular, in that the
x and y arrays must be monotonic over rows and columns, respectively. The lines
describing the quadrilateral enclosing each cell and whose vertices are (Xi,j, Yi,j),
(Xi+i,j, Yi+1,j), (Xi+1,j+i, Yi+i,j+i), and (Xi,j+1, Yi,j+1) must intersect only at the four corners.

Alternative Contouring Algorithms in CONTOUR

In order to provide a wide range of options, CONTOUR uses either the cell draw-
ing or the follow method of drawing contours.

Cell Method

The cell drawing method is used by default. It examines each array cell and draws
all contours emanating from that cell before proceeding to the next cell. This
method is efficient in terms of computer resources but does not allow such options
as contour labeling or smoothing.

84 PV-WAVE User’s Guide

Follow Method

The follow method searches for each contour line and then follows the line until it
reaches a boundary or closes. This method gives better looking results with dashed
linestyles, and allows contour labeling and bicubic spline interpolation, but
requires more computer time. It can be used in with the CONTOURFILL proce-
dure to shade closed contour regions with specified colors, as explained in Filling
Contours with Color on page 94. The follow method is used if any of the following
keywords is specified: C_Annotation, C_Charsize, C_Labels, Follow,
Path_Filename, or Spline. In addition, the use of any of these keywords causes the
contours to be labeled.

NOTE Because of their differing algorithms, these two methods will often draw
slightly different correct contour maps for the same data. This is a direct result of
the fact that there is often more than one valid way to draw contours, and should
not be a cause for concern.

Controlling Contour Features with Keywords

In addition to most of the keyword parameters accepted by PLOT, the following
keywords apply to CONTOUR.

For a detailed description of these keywords, see .

Contouring Example

Digital elevation data of the Maroon Bells area, near Aspen, Colorado, are used to
illustrate the CONTOUR procedure. This data provides terrain elevation data over
a 7.5 minute square (approximately 11-by-13.7 kilometers at the latitude of
Maroon Bells), with 30 meter sampling measured in Universal Transverse Merca-
tor (UTM) coordinates.

The data are read into a 350-by-460 array A. The rectangular array is not com-
pletely filled with data, because the 7.5 minute square is not perfectly oriented to
the UTM grid system. Missing data are represented as zeroes. Elevation measure-
ments range from 2658 to 4241 meters, or from 8720 to 13,914 feet.

C_Annotation C_Labels Follow NLevels

C_Charsize C_Linestyle Levels Path_Filename

C_Colors C_Thick Max_Value Spline

Drawing Contour Plots with the CONTOUR Procedure 85

Figure 5-1 is the result of applying the CONTOUR procedure to the data, using the
default settings:

CONTOUR, A

A number of problems are apparent:

• PV-WAVE selected six contour levels, by default, of (4241 – 0) / 7 meter inter-
vals, or approximately 605 meters. The levels are 605, 1250, ..., 3635, meters,
even though the range of valid data is from 2658 to 4241 meters. This is
because the missing data values of 0 were considered when selecting the inter-
vals. It is more appropriate to select levels only within the range of valid data.

Figure 5-1 Simple contour plot of Maroon Bells.

• For most display systems, and for contour intervals of approximately 200
meters, the data are oversampled in the XY direction. This oversampling has
two adverse effects: the contours appear jagged, and a large number of short
vectors are produced. This can cause performance problems when you attempt
to plot the data on a graphics device, especially if the graphic output is directed
to a serial terminal or PostScript printer.

• The axes are labeled by point number, but should be in UTM coordinates.

• It is difficult to visualize the terrain and to discern maxima from minima
because each contour is drawn with the same type of line.

Each of the above problems is readily solved using the following simple
techniques:

86 PV-WAVE User’s Guide

❑ Specify the contour levels directly using the Levels keyword parameter. Select-
ing contour intervals of 250 meters, at elevation levels of [2750, 3000, 3250,
3500, 3750, 4000], results in six levels.

❑ Change the missing data value to a value well above the maximum valid data
value. Then use the Max_Value keyword parameter to exclude missing points.
In this example, we set missing data values to one million with the statement:
A(WHERE(A EQ 0)) = 1.0E6

❑ Use the REBIN function to decrease the sampling in x and y by a factor of 5:
B = REBIN(A, 350/5, 460/5)

This smooths the contours, because the call to REBIN averages 52 = 25 bins
when resampling. The number of vectors transmitted to the display are also
decreased by a factor of approximately 25. The variable B is now a 70-by-92
array.

Care was taken, in the second step, to ensure that the missing data are not con-
fused with valid data after REBIN is applied. As, in this example, REBIN
averages bins of 52 = 25 elements, the missing data value must be set to a value
of at least 25 times the maximum valid data value. After application of REBIN
any cell with a missing original data point will have a value of at least 106/25
= 40000, well over the largest valid data value of approximately 4500.

❑ Vectors x and y are constructed containing the UTM coordinates for each row
and column. From the USGS data tape, the UTM coordinate of the lower-left
corner of the array is (326850, 4318500) meters. As the data spacing is 30
meters in both directions, the x and y vectors, in kilometers, are easily formed
using the FINDGEN function, as shown in the following example.

❑ Contour levels at each multiple of 500 meters (every other level), are drawn
with a solid line style, while levels in between are drawn with a dotted line
style. In addition, the 4000 meter contour is drawn with a triple thick line,
emphasizing the top contour.

The result of these improvements is Figure 5-2. It was produced with the following
statements:

a(WHERE(a eq 0)) = 1e6

; Set missing data points to a large value.

b = REBIN(a, 350/5, 460/5)

; Rebin down to a 70-by-92 matrix.

x = 326.850 + .030 * FINDGEN(70)

y = 4318.500 + .030 * FINDGEN(92)

; Make the x and y vectors, giving the position of each
; column and row.

Drawing Contour Plots with the CONTOUR Procedure 87

CONTOUR, b, x, y, Levels = 2750+FINDGEN(6) * $
250., XStyle = 1, YStyle = 1, $
Max_Value = 5000, $
C_Linestyle = [1, 0, 1, 0, 1, 0],$
C_Thick = [1, 1, 1, 1, 1, 3], $
Title = ’Maroon Bells Region’, $
Subtitle = ’250 meter contours’, $
XTitle = ’UTM Coordinates (KM)’

; Make the plot, specifying the contour levels, missing data
; value, line styles, etc. Set the style keywords to 1, obtaining
; exact axes.

Figure 5-2 Improved contour plot.

Overlaying Images and Contour Plots

Figure 5-3 illustrates the data displayed as a gray-scale image. Higher elevations
are white. This image demonstrates that contour plots do not always provide the
best qualitative visualization of many two-dimensional data sets.

88 PV-WAVE User’s Guide

Figure 5-3 Maroon Bells data displayed as an image.

Superimposing an image and its contour plot combines the best of both worlds; the
image allows easy visualization, and the contour lines provide a semi-quantitative
display.

NOTE Beginners may want to skip the programs presented in the rest of this sec-
tion. A combined contour and image display, such as that discussed in this section,
can be created using the IMAGE_CONT procedure. The following material is
intended to illustrate the many ways in which images and graphics may be com-
bined using PV-WAVE.

The technique used to overlay plots and images depends on whether or not the
device is able to represent pixels of variable size, as does PostScript, or if it has pix-
els of a fixed size. If the device does not have scalable pixels the image must be
resized to fit within the plotting area (if it is not already of a size suitable for view-
ing). This leads to three separate cases which are illustrated in the following
examples.

Overlaying on Devices with Scalable Pixels

Certain devices, notably PostScript, can display pixels of any given size. With these
devices, it is easy to set the size and position of an image so that it exactly overlays
the plot window. For example, the following statements were used to produce
Figure 5-4:

Drawing Contour Plots with the CONTOUR Procedure 89

c = BYTSCL(a, MIN = 2658, MAX=4241)

; Scale the range of valid elevations into intensities.

TV, c, !X.Window(0), !Y.Window(0), $
XSize = !X.Window(1) - !X.Window(0), $
YSize = !Y.Window(1) - !Y.Window(0), /Norm

; Display the image with its lower-left corner at the origin of the
; plot window, and with its size scaled to fit the plot window.

CONTOUR, b, x, y, Levels = 2750+FINDGEN(6) $
*250., MAX_VALUE = 5000, XStyle = 1, $
YStyle =1, /Noerase, $
Title = ’Maroon Bells Region’, $
Subtitle = ’250 meter contours’, $
XTitle = ’UTM Coordinates (KM)’

; Write the contours over the image, being sure to use the exact
; axis styles so that the contours fill the plot window. Inhibit
; erasing.

Be sure that the position of the plot window contained in the field Window in !X,
!Y, and !Z, is set, using CONTOUR or PLOT, before executing the above
statements.

Figure 5-4 Overlay of image and contour plot.

Also, note that in Figure 5-4 that the aspect ratio of the image was changed to fit
that of the plot window. If it is desired to retain the original image aspect ratio, the
plot window must be resized to an identical aspect ratio using the Position keyword
parameter.

90 PV-WAVE User’s Guide

Overlaying on Devices with Fixed Pixels

There are two methods for overlaying images on devices with fixed pixels.

Method 1

If the pixel size can’t be changed, for example on a Sun workstation monitor, an
image of the same size as the plotting window must be created using the POLY_2D
function. The REBIN function can also be used to resample the original image, if
the plot window dimensions are an integer multiple or factor of the original image
dimensions. REBIN is always faster than POLY_2D.

The following commands create an image of the same size as the window, display
it, and then overlay the contour plot. These commands perform the same basic
function as the IMAGE_CONT procedure, which is described in the PV-WAVE
Reference.

px = !X.Window * !D.X_Vsize

py = !Y.Window * !D.Y_Vsize

; Get size of plot window in device pixels.

sx = px(1)-px(0)+1

sy = py(1)-py(0)+1

; Desired size of image in pixels.

sz = SIZE(a)

; Get size of original image. sz(1) = number of columns,
; sz(2) = number of rows.

ERASE

; Erase the display.

TV, POLY_2D(BYTSCL(a), [[0,0], $
[sz(1)/sx,0]], [[0,sz(2)/sy],[0,0]], $
0, sx, sy), px(0), py(0)

; Create a sx-by-sy image stretched from the original.
; Display it with same lower-left corner coordinate as the
; window. Note that we BYTSCL before changing the size,
; as it is more efficient to apply POLY_2D to byte images.
; Also, it is likely that the original image is smaller than the
; stretched image.

CONTOUR, a, /Noerase, XStyle = 1,YStyle = 1

; Draw the contour without first erasing the screen.

Method 2

If the image is already close to the proper display size, it is simpler and more effi-
cient to change the plot window size to that of the image. The following commands

Drawing Contour Plots with the CONTOUR Procedure 91

display the image at the window origin, and then set the plot window to the image
size, leaving its origin unchanged:

px = !X.Window * !D.X_Vsize

; Get the size of the plot window in device pixels.

py = !Y.Window * !D.Y_Vsize

sz = SIZE(a)

; The size of the original image.

ERASE

; Clear the display.

TVSCL, a, px(0), py(0)

; Scale and display the image at the lower left corner of the plot
; window.

CONTOUR, a, /Noerase, XStyle = 1, YStyle = 1,$
Position = [px(0), py(0), px(0)+sz(1)-1,$
py(0)+sz(2)-1], /Device

; Make the contour, explicitly set the plot window, in device
; coordinates to the size of the image. Make the axes exact.
; Don’t erase.

Of course, by using other keyword parameters with the CONTOUR procedure, you
can further customize the results.

Labeling Contours

In the following discussion, a variable named DATA is contoured. This variable
contains uniformly distributed random numbers obtained using the following
statement:

DATA = RANDOMU(SEED, 6, 6)

NOTE The default SEED value is used to create the DATA variable. Because of
this, if you try to run these examples, your output will probably differ somewhat
from the illustrations shown.

To label contours using the defaults for label size and contours to label, it is suffi-
cient to simply select the Follow keyword. In this case, CONTOUR labels every
other contour using the default label size (3/4 of the plot axis label size). Each con-
tour is labeled with its value. Figure 5-5 was produced using the statement:

CONTOUR, /Follow, DATA

92 PV-WAVE User’s Guide

Figure 5-5 Simple labeled contour plot.

The C_Charsize keyword is used to specify the size of the characters used for label-
ing, in the same manner that Size is used to control plot axis label size. The
C_Labels keyword can be used to select the contours to be labeled. For example,
suppose that we want to contour the variableDATA at 0.2, 0.5, and 0.8, and we want
all three levels labeled. In addition, we wish to make each label larger, and use Post-
Script fonts. This can be accomplished with the statement:

CONTOUR, Level = [0.2, 0.5, 0.8], $
C_Labels = [1, 1, 1], C_Charsize = 1.25, $
DATA, Font = 0

; Note that Font = 0 is used to specify the use of hardware fonts.

For more information on hardware fonts, see Software vs. Hardware Fonts: How to
Choose on page 259. The result of this statement is shown in Figure 5-6.

Figure 5-6 Label size and levels specified.

Drawing Contour Plots with the CONTOUR Procedure 93

Finally, it is possible to specify the text to be used for the contour labels using the
C_Annotation keyword.

CONTOUR, Level = [0.2, 0.5, 0.8], C_Labels = $
[1, 1, 1], C_Annotation = [’Low’, $
’Medium’, ’High’], DATA, Font = 0

The result is shown in Figure 5-7.

Figure 5-7 Explicitly specified labels.

Smoothing Contours

NOTE The CONTOUR2 algorithm produces smoothed contour lines by default.

When the Spline keyword is specified, CONTOUR smooths the contours using
cubic splines. This is especially effective when used with sparse data sets — the
effectiveness of smoothing diminishes if enough data points are present and the
cost of the spline calculations increases. Use of spline interpolation is not recom-
mended when the array dimensions are more than approximately 15.

The effect of smoothing the variable DATA using the statement:

CONTOUR, Level = [0.2, 0.5, 0.8], $
C_Labels = [1, 1, 1], /Spline, DATA

can be seen in Figure 5-8. Compare it with the non-smoothed versions in
Figure 5-6 and Figure 5-7.

94 PV-WAVE User’s Guide

Figure 5-8 Contour plot with smoothing via cubic splines.

Filling Contours with Color

NOTE The following procedure applies primarily to CONTOUR. The
CONTOUR2 procedure simplifies contour filling with a convenient Fill keyword.
See the PV-WAVE Reference for information filling contours with CONTOUR2.

It is possible to fill closed contours with color by using the keyword Path_Filename
in conjunction with the procedure POLYCONTOUR. Path_Filename specifies the
name of a file to contain the contour positions. If Path_Filename is present,
CONTOUR does not draw the contours, but rather, opens the specified file and
writes the positions, in normalized coordinates, into it. The file thus produced is
used by POLYCONTOUR to fill the closed contours with different colors. POLY-
CONTOUR has the form:

POLYCONTOUR, filename [, Color_Index = cin]

where filename is the name of the file written by CONTOUR an cin is the color
index array. Element 0 of cin contains the background color, and each of the fol-
lowing elements contains the color that the corresponding contour level should be
filled with. If the Color_Index keyword is not specified, POLYCONTOUR supplies
a default set of colors.

The problem with directly producing a plot in this manner is that most of the con-
tours are not closed, as they run beyond the borders of the plot. Since
POLYCONTOUR can only fill closed contours, many of the contours will not be
filled. This can be avoided by creating an array with two more columns and two

Drawing Contour Plots with the CONTOUR Procedure 95

more rows than our data array. The data array is placed into the center of this new
array, and the outer rows and columns are set to a value that is not specified in the
Levels keyword. This will ensure that there are no open contours. To demonstrate
with our DATA variable:

data2 = REPLICATE(-1.0, 8, 8)

; DATA2 has two more rows and two more columns than DATA, and
; is filled with –1.0, which is not a value that will be specified as a contour level.

data2(1,1) = data

; DATA is copied into the center of DATA2. The edges remain at –1.0.

Using DATA2, the following statements will produce a contour plot of DATA with
the contours filled:

clev = [0.2, 0.5, 0.8]

; Levels to contour.

cin= [192, 208, 224, 240]

; Colors to fill with.

clab=[1, 1, 1]

; Contours to Label (all three specified in clev).

CONTOUR, /Spline, Levels = clev, $
C_Label = clab, Path_Filename = $
’cpaths.dat’, data2, XRange = [0, 7], $
XStyle = 1, YRange = [0, 7], YStyle = 1

; Create a file named cpaths.dat containing the contour paths.
; The range keywords avoid plotting the top and right border.
; The style keywords prevent PV-WAVE from rounding the plot
; range to a different value from that specified.

POLYCONTOUR, ’cpaths.dat’, Color_Index = cin

; Use POLYCONTOUR to fill the closed contours.

CONTOUR, /Spline, Levels = clev, C_Label = $
clab, /Noerase, data2, XRange = [0, 7], $ XStyle = 1, YRange

= [0, 7], YStyle = 1

; Use CONTOUR a second time to draw the contours over the
; filled regions.

The result is shown in Figure 5-9.

96 PV-WAVE User’s Guide

Figure 5-9 Filled contour plot with closed contours.

Drawing a Surface
The SURFACE procedure draws “wire mesh” representations of functions of X
and Y, just as CONTOUR draws their contours. Parameters to SURFACE are sim-
ilar to CONTOUR. SURFACE accepts a two-dimensional array of Z (elevation)
values, and optionally x and y parameters indicating the location of each Z element.

SURFACE projects the three-dimensional array of points into two dimensions after
rotating about the Z and then the X axes. Each point is connected to its neighbors
by lines. Hidden lines are suppressed. The rotation about the X and Z axes can be
specified with keywords, or a complete three-dimensional transformation matrix
can be stored in the field !P.T, for use by SURFACE. Details concerning the
mechanics of 3D projection and rotation are covered in the next sections.

The following code illustrates the most basic call to SURFACE. It produces a two-
dimensional Gaussian function and then calls SURFACE to produce Figure 5-10:

z = SHIFT(DIST(40), 20, 20)

; Create a 40-by-40 array, shift the origin to the center of the array.

SURFACE, EXP(-(z/10)^2)

; Form a Gaussian with a 1/e width of 10, and call SURFACE to
; display it.

Drawing a Surface 97

Figure 5-10 Simple SURFACE plot of a Gaussian.

In the above example, the DIST function creates an (n, n) array. DIST is a useful
function for creating data, and is described in detail in the PV-WAVE Reference.

Controlling Surface Features with Keywords

The following keywords are unique to, or have particular relevance to, the
SURFACE procedure. For a complete list of the SURFACE keywords, see the
description of SURFACE in the PV-WAVE Reference.

For a detailed description of these keywords, see .

Ax Horizontal Skirt

Az Lower_Only Upper_Only

Bottom Save ZAxis

98 PV-WAVE User’s Guide

Example of Drawing a Surface

Figure 5-11 illustrates the application of the SURFACE procedure to the Maroon
Bells data discussed earlier in this chapter (see Drawing Contour Plots with the
CONTOUR Procedure on page 82).

Figure 5-11 Maroon Bells surface plots.

The left illustration was produced by the following statements:

c = REBIN(a > 2650, 350/5, 460/5) $

SURFACE, c, x, y, SKIRT=2650

The first statement rebins the original data into a 70-by-92 array, as discussed in
Contouring Example on page 84, while setting all missing data values (which are
0) to 2650, the lowest elevation we wish to show. As with CONTOUR, there can
be too many data values, obscuring the surface with too much detail, and requiring
more computation and drawing time.

The right illustration shows the Maroon Peaks area looking from the back row to
the front row (north to the south), AZ = 210, and from a slightly steeper azimuth
AX = 45. Also, only the horizontal lines are drawn because the Horizontal key-
word assignment is present in the call:

SURFACE, c, x, y, SKIRT=2650, /Hor, AZ = 210, AX = 45

Because the axes were rotated 210 degrees about the original Z axis, the annotation
is reversed and the X axis is behind and obscured by the surface. This undesirable
effect can be eliminated by reversing the data array c about its Y axis. Also the y
vector of element locations must be reversed, and the YRange keyword used to
reverse the Y axis ordering.

SURFACE, reverse(c ,2), x, reverse(y), $
Skirt = 2650, /Hor, AX = 45, YRange = [Max(y), Min(y)]

; Perform as previously, but reverse the data rather
; than the axes.

Drawing Three-dimensional Graphics 99

Drawing Three-dimensional Graphics
Points in XYZ space are expressed by vectors of homogeneous coordinates. These
vectors are translated, rotated, scaled, and projected onto the two-dimensional
drawing surface by multiplying them by transformation matrices. The geometrical
transformations used by PV-WAVE, and many other graphics packages, are taken
from Chapters 7 and 8 of Fundamentals of Interactive Computer Graphics by J. D.
Foley and A. Van Dam (Addison Wesley Publishing Co., 1982). Consult this book
for a detailed description of homogeneous coordinates and transformation matri-
ces, as this section presents only an overview.

Overview of Homogeneous Coordinates

A point in homogeneous coordinates is represented as a four-element column vec-
tor of three coordinates and a scale factor w ≠ 0:

P(wx, wy, wz, w) ≡ P(x / w, y / w, z / w, 1) ≡ (x, y, z) (13.1)

One advantage of this approach is that translation, which normally must be
expressed as an addition, may be represented as a matrix multiplication. Another
advantage is that homogeneous coordinate representations simplify perspective
transformations.

PV-WAVE Uses a Right-handed Coordinate System

The coordinate system is right-handed so that when looking from a positive axis to
the origin a positive rotation is counterclockwise. As usual, the x-axis runs across
the display, the y-axis is vertical, and the positive Z axis extends out from the dis-
play to the viewer. A 90 degree positive rotation about the Z axis transforms the X
axis to the Y axis.

Overview of Transformation Matrices

For most applications, it is not necessary to create, manipulate, or to even under-
stand transformation matrices. The T3D procedure, explained below, implements
most of the common transformations.

Transformation matrices, which post-multiply a point vector to produce a new
point vector, must be (4,4). A series of transformation matrices may be concate-
nated into a single matrix by multiplication. If A1, A2, and A3 are transformation
matrices to be applied in order, and the matrix A is the product of the three
matrices:

100 PV-WAVE User’s Guide

((P · A1) · A2) · A3 ≡ P · ((A1 · A2) · A3) = P · A

A = (A1 · A2) · A3

PV-WAVE stores the concatenated transformation matrix in the system variable
field !P.T.

Each of the operations of translation, scaling, rotation, and shearing may be repre-
sented by a transformation matrix.

Translating Data

The transformation matrix to translate a point by (Dx, Dy, Dz) is:

Scaling Data

Scaling by factors of Sx, Sy, and Sz, about the x-, y- and z-axes respectively is rep-
resented by the matrix:

Rotating Data

Rotation about the x-, y-, and z-axes is represented respectively by the three
matrices:

1 0 0 Dx

0 1 0 Dy

0 0 1 Dz

0 0 0 1

Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

Rx

1 0 0 0

0 θxcos θxsin– 0

0 θxsin θxcos 0

0 0 0 1

=

Drawing Three-dimensional Graphics 101

Clipping 3D Plots

Clipping consists of defining a specific region in a plot where existing data is plot-
ted, and outside of which no data are shown. The general concept of clipping and
the use of clipping for two-dimensional plots is discussed in Chapter 4, Displaying
2D Data. Keywords provided with the PV-WAVE graphics commands let you
specify how clipping is done.

Notes on the Keywords and System Variables for 3D Clipping

When you call CONTOUR or SURFACE, the value of !P.Clip is set to a default
value. This value depends on the current device. Setting the Clip keyword has no
effect on !P.Clip.

Graphics keywords for controlling clipping are discussed in detail in Chapter 4,
Displaying 2D Data of this manual, and are summarized in Notes on the Keywords
and System Variables on page 71.

If you use clipping in a three-dimensional plot and you rotate the plot in three
dimensions, you may notice some unusual clipping behavior. For instance, some
part of your plot may be clipped in 3D when it was not clipped in 2D, as shown in
the following example. Note the clipping “problem” encountered when these two
plots are compared:

PLOT, INDGEN(100)

; Produce the first plot — a simple line plot.

SURFR

; Set up 3D translation.

PLOT, INDGEN(100), /T3D

; Produce the second plot — a simple line plot translated to 3D.

Ry

θycos 0 θysin– 0

0 1 0 0

θysin 0 θycos 0

0 0 0 1

=

Rz

θzcos θzsin– 0 0

θzsin θzcos 0 0

0 0 1 0

0 0 0 1

=

102 PV-WAVE User’s Guide

Figure 5-12 The picture on the left (a) shows a simple line plot. In (b), the same plot is
shown translated in 3D. The translated plot appears to be missing some data near the origin.

The key to clipping in three dimensions is to remember that the !P.Clip system vari-
able defines a default clipping rectangle that a) is always in device coordinates and
b) cannot be translated to 3D coordinates.

The following figure shows clearly why the rotated graphic was clipped by the
default clipping rectangle.

PRINT, !P.Clip
90 72 613 476 0 6

; Show the coordinates of the default clipping rectangle defined by !P.Clip.

In this figure, a dashed line was drawn connecting the coordinates defining the cor-
ners of the default clipping rectangle. The coordinates of these corners were taken
directly from !P.Clip. The dashed lines show clearly the boundary of this clipping
rectangle. Part of the data (near the origin) falls outside this rectangle, and that is
why it is clipped.

(a) Simple line plot, untranslated (b) Translated line plot.

Area of clipped
data

Drawing Three-dimensional Graphics 103

Figure 5-13 The data in a translated graphic can be clipped by the default clipping rectan-
gle, which cannot be rotated. This unwanted clipping behavior can be avoided by adding the
/NoClip keyword to the command that produces the rotated graphic.

You can avoid unwanted clipping of translated plots by adding the NoClip keyword
to the graphics command:

PLOT, INDGEN(100), /T3D, /NoClip

Figure 5-14 The same translated plot is produced, but this time /NoClip is specified on the
command line. The data near the origin is not clipped.

The clipping rectangle defined by the Clip keyword is translated along with the plot
for which it is defined. You can use Clip to modify a plot, and the clipping is pre-
served whenever you translate or rotate the plot in 3D, as the following example
shows:

(613,72)

(613, 476)(90,476)

(90,72)

104 PV-WAVE User’s Guide

PLOT, INDGEN(100), Clip=[25,25,75,75]

SURFR

PLOT, INDGEN(100), Clip=[25,25,75,75], /T3D

Figure 5-15 The “clipping rectangle” defined by the Clip keyword is translated/rotated in 3D
along with the rest of the graphic. The clipping rectangle does not appear on an actual plot;
it is shown here for illustration purposes only.

Using the T3D Procedure to Transform Data

The T3D procedure creates and accumulates transformation matrices, storing them
in the system variable field !P.T. It can be used to create a transformation matrix
composed of any combination of translation, scaling, rotation, perspective projec-
tion, oblique projection, and axis exchange.

Keywords that affect transformations are applied in the order of their description
below:

❑ Reset — Resets the transformation matrix to the identity matrix to begin a new
accumulation of transformations. If this keyword is not present, the current
transformation matrix !P.T is post-multiplied by the new transformation. The
final transformation matrix is always stored back in !P.T.

❑ Translate — Translates by the three-element vector [Tx, Ty, Tz].

(a) Untranslated, clipped plot (b) Translated, clipped plot

“Clipping rectangle”

Drawing Three-dimensional Graphics 105

❑ Scale — Scales by factor [Sz, Sy, Sz].

❑ Rotate — Rotates about each axis by the amount [θx, θy, θz], in degrees.

❑ Perspective — A scalar (p) indicating the z distance of the center of the projec-
tion in the negative direction. Objects are projected into the XY plane, at
Z = 0, and the “eye” is at point (0, 0, –p).

❑ Oblique — A two-element vector, [d, α], specifying the parameters for an
oblique projection. Points are projected onto the XY plane at z = 0 as follows:

x' = x + z(d cos α)

y' = y + z(d sin α)

An oblique projection is a parallel projection in which the normal to the pro-
jection plane is the z-axis, and the unit vector (0, 0, 1) is projected to (d cos α,
d sin α).

❑ XYexch — If set, exchanges the x- and y-axes.

❑ XZexch — If set, exchanges the x- and z-axes.

❑ YZexch — If set, exchanges the y- and z-axes.

An Example of Transformations Created by SURFACE

The SURFACE procedure creates a transformation matrix from its keyword param-
eters AX and AZ as follows:

❑ It translates the data so that the center of the normalized cube is moved to the
origin.

❑ It rotates –90 degrees about the x-axis to make the +z-axis of the data the +y-
axis of the display. The +y data axis extends from the front of the display to the
rear.

❑ It rotates about the y-axis AZ degrees. This rotates the result counterclockwise
as seen from above the page.

❑ It rotates about the x-axis AX degrees, tilting the data towards the viewer.

❑ It then translates back to the origin and scales the data so that the data are still
contained within the normal coordinate unit cube after transformation.

These transformations can be created using T3D as shown below. The SURFR
(SURFace Rotate) procedure mimics the transformation matrix created by SUR-
FACE using this method.

T3D, /Reset, Translate=[-.5, -.5, -.5]

; Translate to move center of cube to origin.

106 PV-WAVE User’s Guide

T3D, Rotate=[-90, az, 0]

; Rotate –90 degrees about x-axis, so +z-axis is now +y.
; Then rotate about y-axis AZ degrees.

T3D, Rotate=[ax, 0, 0]

; Rotate AX about x-axis.

SCALE3D

; This procedure scales !P.T so that the unit cube still fits within the
; unit cube after transformation.

Converting from 3D to 2D Coordinates

To convert from a three-dimensional coordinate to a two-dimensional coordinate,
PV-WAVE follows these steps:

• Data coordinates are converted to three-dimensional normalized coordinates.
As described in Coordinate System Conversion on page 44, to convert the X
coordinate from data to normalized coordinates:

Nx = X0 + X1Dx

where X1 is !X.S(i). The same process is used to convert the Y and Z coordinates
using !Y.S and !Z.S.

• The three-dimensional normalized coordinate, P = (Nx, Ny, Nz), whose homo-
geneous representation is (Nx, Ny, Nz, 1), is multiplied by the concatenated
transformation matrix !P.T:

P' = P · !P.T

• The vector P' is scaled, as in Equation 13.1 in Overview of Homogeneous
Coordinates on page 99, by dividing by w, and the normalized 2D coordinates
are extracted:

N'x = P'x / P'w and N'y = P'y / P'w

• The normalized XY coordinate is converted to device coordinates as described
in Coordinate System Conversion on page 44.

This process can be written as a PV-WAVE function:

FUNCTION CVT_TO_2D, x, y, z

; Accept a 3D data coordinate, return a two-element vector
; containing the coordinate transformed to 2D normalized
; coordinates using the current transformation matrix.

p = [!x.s(0) + !x.s(1) * x, !y.s(0) + !y.s(1)$
* y, !z.s(0) + !z.s(1) * z, 1]

; Make a homogeneous vector of normalized 3D coordinates.

Drawing Three-dimensional Graphics 107

p = p # !P.T

; Transform by !P.T.

RETURN, [p(0) / p(3), p(1) / p(3)]

; Return the scaled result as a two-element, 2D, XY vector.

END

Establishing Your Own 3D Coordinate System

Usually, scaling parameters for coordinate conversion are set up by the higher-level
plotting procedures. To set up your own 3D coordinate system with a given trans-
formation matrix and X, Y, Z data range, follow these steps:

• Establish the scaling from your data coordinates to normalized coordinates —
the (0,1) cube. Assuming your data are contained in the range (Xmin, Ymin, Zmin)
to (Xmax, Ymax, Zmax), set the data scaling system variables as follows:

!X.S = [-Xmin, 1] / (Xmax - Xmin)

!Y.S = [-Ymin, 1] / (ymax - Ymin)

!Z.S = [-Zmin, 1] / (Zmax - Zmin)

• Establish the transformation matrix which determines the view of the unit
cube. This can be done by either calling T3D, explained above, or by directly
manipulating !P.T yourself. If you wish to simply mimic the rotations provided
by the SURFACE procedure, call the SURFR procedure.

• Call the SCALE3D procedure to re-scale the projected unit cube back to the
(0,1) 2D normalized coordinate square. SCALE3D transforms a unit cube by
the current !P.T and uses the extrema of each axis to translate and rescale the
result back to the unit square.

Example of Data Transformations

This example draws four views of a simple house. The procedure HOUSE defines
the coordinates of the front and back faces of the house. The data to normal coor-
dinate scaling is set, as shown above, to a volume about 25% larger than that
enclosing the house. The PLOTS procedure draws lines describing and connecting
the front and back faces. XYOUTS is called to label the front and back faces.

The main program contains four sequences of calls to T3D to establish the coordi-
nate transformation, followed by a call to SCALE3D to center the transformed unit
cube in the viewing area, and then by a call to HOUSE.

108 PV-WAVE User’s Guide

NOTE Remember that a valid data coordinate system must be established before
calling PLOTS. This coordinate system can be established by a call to PLOT, or by
explicitly setting values of the system variables !X, !Y, and !Z.

Procedure Used to Draw a House

PRO HOUSE

; Define a procedure to draw a house.

house_x = [0, 16, 16, 8, 0, 0, 16, 16, 8, 0]

; The X coordinates of 10 vertices. First 5 are front face, second 5
; are back face. Range is 0 to 16.

house_y = [0, 0, 10, 16, 10, 0, 0, 10, 16, 10]

; Corresponding y values. Range is 0 to 16.

house_z = [54, 54, 54, 54, 54, 30, 30, 30, 30, 30]

; Z values, from 30 to 54.

!X.S = [-(-4), 1.)] / (20 - (-4))

; Set x data scale to range from –4 to 20.

!Y.S = !x.s

; Same for y.

!Z.S = [-10, 1.] / (70 - 10)

; Z range is from 10 to 70.

face = [INDGEN(5), 0]

; Indices of front face.

PLOTS, house_x(face), house_y(face), $
house_z(face), /T3D, /Data

; Draw front face.

PLOTS, house_x(face+5), house_y(face+5),$ house_z(face+5), /T3D,
/Data

; Draw back face.

FOR i=0, 4 DO PLOTS, [house_x(i), $
house_x(i+5)], [house_y(i), $
house_y(i+5)], [house_z(i), $
house_z(i+5)], /T3D, /Data

; Connecting lines from front to back.

XYOUTS, house_x(3), house_y(3), $
Z=house_z(3), ’Front’, /T3D, $
/Data, Size=2

; Annotate front peak.

Drawing Three-dimensional Graphics 109

XYOUTS, house_x(8), house_y(8), $
Z=house_z(8), ’Back’, /T3d, $
/Data, Size = 2

; Annotate back.

END

; End of HOUSE procedure.

Commands that Perform Transformations on the House

T3D, /Reset & SCALE3D & house

; Set up no rotation, scale, and draw house.

T3D, /Reset, rot=[30, 30, 0] & SCALE3D & HOUSE

; Straight projection after rotating 30 degrees about x- and y-axes.

T3D, /Reset, rot=[0, 0, 0], $
oblique = [.5, -45] & SCALE3D & HOUSE

; No rotation, oblique projection, Z factor = 0.5, angle = 45.

T3D, /Reset, rot = [0, 0, 0], perspective = 4 $
& SCALE3D & HOUSE

; No rotation, perspective at 4.

Figure 5-16 Illustration of different 3D transformations. From upper left: No rotation, plain
projection; Rotation of 30 degrees about both the x- and y-axes, plain projection; Oblique
projection, factor = 0.5, angle = –45; and in the bottom right, 30 degrees rotation with the
eye at 50.

110 PV-WAVE User’s Guide

3D Transformations with 2D Procedures
The CONTOUR and PLOT procedures output their results using the three-dimen-
sional coordinate transformation contained in !P.T, if the keyword T3d is specified

NOTE !P. T must contain a valid transformation matrix prior to using the T3d
keyword.

The PLOT procedures output graphs in the XY plane at the normal coordinate z
value given by the keyword ZValue. If ZValue is not specified, the plot is drawn at
the bottom of the unit cube, at z=0.

CONTOUR draws axes at Z=0, and contours at their Z data value if ZValue is not
specified. If ZValue is present, CONTOUR draws both the axes and contours in the
XY plane at the given Z value.

Combining CONTOUR and SURFACE Procedures

You can combine the output of SURFACE with the other graphics procedures. The
keyword Save causes SURFACE to save the graphic transformation it used in !P.T.
Then, when CONTOUR or PLOT are called with the keyword T3d, their output is
transformed with the same projection.

For example, Figure 5-17 illustrates SURFACE combined with CONTOUR. In
essence, this a combination of Figure 5-2 and Figure 5-11. Using the same vari-
ables as discussed in Drawing Contour Plots with the CONTOUR Procedure on
page 82 and Drawing a Surface on page 96, this figure was produced with the fol-
lowing statements:

SURFACE, c, x, y, SKIRT=2650, /Save

; Make the mesh as in Figure 5-11.

CONTOUR, b, x, y, /T3d, /Noerase, $
Title = ’Contour Plot’, Max_val=5000.,$
Zvalue = 1.0, /Noclip, Levels = 2750. + $
FINDGEN(6)*250

; Make the Contour plot as in Figure 5-2. Specify T3D to align
; with Surface, at ZVALUE of 1.0. Suppress clipping as the plot
; is outside the normal plot window.

3D Transformations with 2D Procedures 111

Figure 5-17 Combining CONTOUR with SURFACE, Maroon Bells data.

Even More Complicated Transformations are Possible

Figure 5-18 illustrates the application of three-dimensional transforms to the out-
put of CONTOUR and PLOT. It shows a three-dimensional contour plot with the
contours stacked above the axes in the Z direction, the sum of the columns, also a
Gaussian, in the XZ plane, and the sum of the rows in the YZ plane.

Figure 5-18 Example of using PLOT and CONTOUR with a 3D transform.

112 PV-WAVE User’s Guide

The code used to draw Figure 5-18 is:

nx=40

temp = SHIFT(DIST(40), 20, 20)

z = EXP(-(temp/10)^2)

; Create a 2D Gaussian array, z.SURFR
; Set up !P.T with default SURFACE transformation.

pos = [.1, .1, 1, 1, 0, 1]

; Define the 3D plot window. X = .1 to 1, Y = .1 to 1, 1 and Z = 0 to 1.

CONTOUR, z, /T3D, NLEVELS=10, /Noclip, Position = pos, Charsize = 2

; Make the stacked contours. Use 10 contour levels.

T3D, /Yzexch

; Swap y- and z-axes. The original XYZ system is now XZY.

PLOT, z # REPLICATE(1., nx), /Noerase, $
/Noclip, /T3d, Title = ’Column Sums’, Position=pos, Charsize=2

; Plot the column sums in front of the contour plot.

T3D, /Xzexch

; Swap x- and z-axes,original XYZ is now YZX.

PLOT, REPLICATE(1., nx) # z, /Noerase, $
/T3d, /Noclip, Title = ’Row Sums’, Position = pos, Charsize = 2

; Plot the row sums along the right side of the contour plot.

The basic steps are:

❑ First, the SURFR procedure is called to establish the default three-to two-
dimensional transformation used by SURFACE, as explained above. The
default rotations are 30 degrees about both the x- and z-axes.

❑ Next, a vector, pos, defining the cube containing the plot window is defined
with normalized coordinates. The cube extends from 0.1 to 1.0 in the x and y
directions, and from 0 to 1 in the Z direction. Each call to CONTOUR and
PLOT must explicitly specify this window to align the plots. This is necessary
because the default margins around the plot window are different in each
direction.

❑ CONTOUR is called to draw the stacked contours with the axes at Z=0. Clip-
ping is disabled to allow drawing outside the default plot window which is only
two-dimensional.

❑ The T3D procedure is called to exchange the y- and z-axes. The original XYZ
coordinate system is now XZY.

❑ PLOT is called to draw the column sums which appear in front of the contour
plot. The expression:

3D Transformations with 2D Procedures 113

z # REPLICATE(1., nx)

creates a row vector containing the sum of each column in the two-dimensional
array z. The Noerase and Noclip keywords are specified to prevent erasure and
clipping. This plot appears in the XZ plane because of the previous axis
exchange.

❑ T3D is called again to exchange the x- and z-axes. This makes the original
XYZ coordinate system, which was converted to XZY, now correspond to
YZX.

❑ PLOT is called to produce the row sums in the YZ plane in the same manner
as the first plot. The original x-axis is drawn in the Y plane, and the y-axis is in
the Z plane. One unavoidable side effect of this method is that the annotation
of this plot is backwards. If the plot is transformed so the letters read correctly,
the x-axis of the plot would be reversed in relation to the y-axis of the contour
plot.

Combining Images with 3D Graphics

Images are combined with 3D graphics, as shown in Figure 5-19, using the trans-
formation techniques described in the previous section.

Figure 5-19 Using the SHOW3 procedure to overlay an image, surface mesh, and contour.

114 PV-WAVE User’s Guide

The rectangular image must be transformed so that it fits underneath the mesh
drawn by SURFACE. The general approach is as follows:

❑ Use SURFACE to establish the general scaling and geometrical transforma-
tion. Draw no data, as the graphics made by SURFACE will be over-written by
the transformed image.

❑ For each of the four corners of the image, translate the data coordinate, which
is simply the subscript of the corner, into a device coordinate. The data coordi-
nates of the four corners of an (m, n) image are (0,0), (m – 1, 0), (0, n – 1), and
(m – 1, n – 1). Call this data coordinate system (X, Y). Using a procedure or
function similar to CVT_TO_2D, described in Converting from 3D to 2D
Coordinates on page 106, convert to device coordinates, which in this discus-
sion are called (U, V).

❑ The image is transformed from the original XY coordinates to a new image in
UV coordinates using the POLY_2D function. POLY_2D accepts an input
image and the coefficients of a polynomial in UV giving the XY coordinates in
the original image. The equations for X and Y are:

X = S0,0 + S0,1U + S1,0V + S1,1UV

Y = T0,0 + T0,1U + T1,0V + T1,1UV

We solve for the four unknown S coefficients using the four equations relating
the X corner coordinates to their U coordinates. The T coefficients are similarly
found using the Y and V coordinates. This can be done using matrix operators
and inversion or, more simply, with the POLYWARP procedure.

❑ The new image is a rectangle which encloses the quadrilateral described by the
UV coordinates. Its size is:

(max(U) – min(U) + 1, max(V) – min(V) + 1)

❑ POLY_2D is called to form the new image which is displayed at device coor-
dinate (min(U), min(V)).

❑ SURFACE is called once again to display the mesh surface over the image.

❑ Finally, CONTOUR is called, with ZValue set to 1.0, placing the contour above
both the image and the surface.

The SHOW3 procedure performs these operations. Look at the code for the
SHOW3 procedure in the Standard Library for details of how images and graphics
can be combined.

Drawing Shaded Surfaces 115

Drawing Shaded Surfaces
The SHADE_SURF procedure creates a shaded representation of a surface made
from regularly gridded elevation data. The shading information may be supplied as
a parameter or computed using a light source model. Displays are easily con-
structed depicting the surface elevation of a variable shaded as a function of itself
or another variable. This procedure is similar to the SURFACE routine, but it ren-
ders the visible surface as a shaded image rather than a mesh.

Parameters are identical to those of the SURFACE procedure, described in the sec-
tion Drawing a Surface on page 96, with the addition of two optional keyword
parameters:

Shades — Specifies an array of the same dimensions as the Z parameter, which
contains the shading color indices. This array should be scaled into the range of
color indices, normally 0 to 255.

Image — Specifies the name of a variable into which the image created by
SHADE_SURF is placed. Normally, the image is displayed on the currently
selected graphics device and then discarded.

Alternative Shading Methods

The shading applied to each polygon, defined by its four surrounding elevations,
may be either constant over the entire cell, or interpolated. Constant shading is
faster because only one shading value needs to be computed for the entire polygon.
Interpolated shading gives smoother, usually more pleasing, results. The Gouraud
method of interpolation is used: the shade values are computed at each elevation
point, coinciding with each polygon vertex; then the shading is interpolated along
each edge; and finally between edges along each vertical scan line.

Light source shading is computed using a combination of depth cueing, ambient
light, and diffuse reflection, adapted from Chapter 16 of Fundamentals of Com-
puter Graphics, Foley and Van Dam:

I = Ia + dIp(L · N)

where:

Ia is the term due to ambient light. All visible objects have at least this intensity,
which is approximately 20% of the maximum intensity.

Ip(L · N) is the term due to diffuse reflection. The reflected light is proportional to
the cosine of the angle between the surface normal vector N, and the vector point-
ing to the light source L. Ip is approximately 0.9.

116 PV-WAVE User’s Guide

d is the term for depth cueing, causing surfaces further away from the observer to
appear dimmer. d = (z+2)/3, where z is the normalized depth, ranging from zero
for the most distant point, to one for the closest.

Setting the Shading Parameters

Parameters affecting the method of shading interpolation, light source direction,
and rejection of hidden faces are set with the SET_SHADING procedure,
described in the PV-WAVE Reference. Defaults are: Gouraud interpolation, light
source direction is [0, 0, 1], and rejection of hidden faces enabled.

See the description of SET_SHADING in PV-WAVE Reference for a more com-
plete description of the parameters. Note that the Reject keyword has no effect on
the output of SHADE_SURF — it is used only with solids.

Sample Shaded Surfaces

The left side of Figure 5-20 illustrates the application of SHADE_SURF, with light
source shading, to the two-dimensional Gaussian, z, used to produce Figure 5-10
on page 97. This figure was produced by the statement:

SHADE_SURF, z

Figure 5-20 Shaded representations of two-dimensional Gaussian.

The right half of Figure 5-20 shows the use of an array of shades, which in this case
is simply the surface elevation scaled into the range of bytes. The output of SUR-
FACE is superimposed over the shaded image with the statements:

SHADE_SURF, z, SHADE=BYTSCL(z)

; Show Gaussian with shades created by scaling elevation into the
; range of bytes.

Drawing Shaded Surfaces 117

SURFACE, z, XST=4, YST=4, ZST=4, /Noerase

; Draw the mesh surface over the shaded figure. Suppress the axes.

Figure 5-21 shows the Maroon Bells data, also shown in the right half of
Figure 5-11 on page 98, as a light source shaded surface. It was produced by the
statement:

SHADE_SURF, b, x, y, AZ=210, AX=45, XST=4,$
YST=4, ZST=4

The AX and AZ keywords specify the orientation. The axes are suppressed by the
axis style keyword parameters, as in this orientation the axes are behind the surface.

Figure 5-21 Maroon Bells data shown as a shaded surface.

118 PV-WAVE User’s Guide

119

CHAPTER

6

Displaying Images
PV-WAVE is a powerful environment for image processing and display. The rou-
tines described in this chapter are the interface between PV-WAVE and the image
display system. The first part of this chapter describes how images are displayed
and controlled. The second part describes a few of the simple ways images can be
transformed or processed.

What is an Image?
An image is a two-dimensional array of pixels. The value of each pixel represents
the intensity and/or color of that position in the array. Images of this form are
known as sampled or raster images, because they consist of a discrete grid of sam-
ples. Such images come from many sources and are a common way of representing
scientific and medical data.

Working with Images

The following routines are used to display and control images.

TV Procedure
; Displays images on the image display.

TVSCL Procedure
; Scales the intensity values of the image into the range of the display
; device, and then displays the result.

TVRD Function
; Reads image pixels back from the display device.

120 PV-WAVE User’s Guide

TVCRS Procedure
; Manipulates the image device cursor. TVCRS allows the cursor to
; be enabled and disabled, and allows it to be positioned.

TVLCT Procedure
; Loads a user-defined color table into the display device.

LOADCT Procedure
; Loads a predefined color table into the display device.

These routines are described further in this chapter, and also in the PV-WAVE Ref-
erence. Many other routines that are useful in viewing and processing images are
also introduced in this chapter, such as REBIN, CONGRID, SMOOTH,
HIST_EQUAL, MEDIAN, CONVOL and many others.

In addition, most plotting and graphics routines can be used with images. These
routines are described in Chapter 4, Displaying 2D Data and Chapter 5, Displaying
3D Data. For example, you can overlay an image on a contour plot by combining
the output of the CONTOUR and TV procedures. Or, the CURSOR routine, which
is ordinarily used to read the position of the interactive pointer device, can be used
to determine the location of image pixels.

Image Display Routines: TV and TVSCL
The TV and TVSCL procedures display images on the screen. They take the same
arguments and keywords, and differ only in that TVSCL scales the image into the
intensity range of the display device, while TV displays the image directly.

For details on the keywords for a particular routine, see the routine’s description in
the PV-WAVE Reference.

Windows USERS Because Windows NT reserves 20 out of the available 256
colors, you might achieve better results displaying color images with the TVSCL
procedure. TVSCL automatically scales the color intensities to the full range of
available colors.

Image Orientation on the Display Screen

The coordinate system of the image display screen is oriented with the origin, (0,
0), in the lower-left corner. The upper-right-hand corner has the coordinate
(Xsize – 1, Ysize – 1), where Xsize and Ysize are the dimensions of the visible area of the

Image Display Routines: TV and TVSCL 121

window or display. The descriptions of the image display routines that follow
assume a window size of 512-by-512, although other sizes may be used.

!Order is a system variable that controls the order in which the image is written to
the screen. Images are normally output with the first row at the bottom (i.e., in bot-
tom to top order), unless !Order is one, in which case, images are written on the
screen from top to bottom. The Order keyword can also be specified with the TV
and TVSCL routines. It works in the same manner as !Order except that its effect
only lasts for the duration of the single call — the default is that specified by
!Order.

An image may be displayed with any of the eight possible combinations of axis
reversal and transposition by combining the display procedures with the ROTATE
function.

Image Position on the Display Screen

Image positions run from the left of the screen to the right and from the top of the
screen to the bottom. If a position number is used instead of X and Y, the position
of the image is calculated from the dimensions of the image as follows:

Xsize, Ysize = size of display or window

Xdim, Ydim = dimensions of array

Nx = Xsize / Xdim = number of images across the screen

X = XdimPositionmoduloNx = starting X value

Y = Ysize – Ydim[1 + Position / Nx] = starting Y value

For example, when displaying 128-by-128 images on a 512-by-512 window or dis-
play, the position numbers run from 0 to 15 as follows:

Image Size

Most image devices have a fixed number of display pixels. Common sizes are 512
x 512, and 1280 x 1024. Such pixels have a fixed size which cannot be changed.
For such devices, the area written on the screen is the same size as the dimensions
of the image array. One-dimensional vectors are considered as row vectors. The X

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

122 PV-WAVE User’s Guide

and Y parameters specify the coordinates of the lower-left corner of the area writ-
ten on the display.

There are some devices, however, that can place an image with any number of pix-
els into an area of arbitrary size. PostScript devices are a notable example. These
devices are said to have scalable pixels, because there is no direct connection
between the number of pixels in the image and the physical space it occupies in the
displayed image. When the current image device has scalable pixels, PV-WAVE
sets the first bit of !D.Flags. The following statement can be used to determine if
the current device has scalable pixels:

SP = !D.Flags AND 1

SP will be nonzero if the device has scalable pixels. When displaying an image on
a device with scalable pixels, the default is to use the entire display surface for the
image. The XSize and YSize keywords can be used to override this default and spec-
ify the width and height that should be used.

The XSize and YSize keywords should also be used when positioning images with
the position argument to TV or TVSCL. Position normally uses the size of the
image in pixels to determine the placement of the image, but this is not possible for
devices with scalable pixels. Instead, the default for such devices is to assume a sin-
gle position that fills the entire available display surface. However, if Xsize and
Ysize are specified, Position will use them to determine image placement.

Examples

TV, REPLICATE(100B, 512, 512)

; Set all display memory to 100.

ABC = BYTARR(50,100)

; Define a 50-column by 100-row array.

TV, ABC, 300, 400

; Display array ABC starting at location x=300, y=400. Display pixels
; in columns 300 to 349, and rows 400 to 499 are zeroed.

TV, ABC/2, 12

; Display image divided by 2 at position number 12.

TV, ABC, 256, 256, 2

; Output image to memory channel 2, lower-left corner at (256, 256).

AA = ASSOC(1, BYTARR(64,64))

; Assume file one contains a sequence of 64-by-64 byte arrays

FOR I=0, 63 DO TV, AA(I), I

; Display 64 images from file, from left to right and top to bottom,
; filling a 640-by-512 area.

Image Magnification and Reduction 123

Image Magnification and Reduction
The size of the area written on the screen, measured in pixels, is identical to the
dimensions of the image expression. Some output devices have hardware zoom and
pan, which can blow up small images to full screen.

NOTE For PostScript output, the size of a pixel may be varied, eliminating the
need for zoom, pan, or software re-sampling.

Other displays, including most of those with window systems, have no hardware
zoom. On these displays, images must be magnified in software. The REBIN and
CONGRID functions provide two ways to magnify or reduce an image to an arbi-
trary size.

Use REBIN for Integral Multiples (or Factors) of Images

With the REBIN function, the final dimensions must be integral multiples or fac-
tors of the original dimensions.

The call to REBIN is:

new_image = REBIN(old_image, cols, rows, /Sample)

where old_image is the array expression to be re-sampled, cols and rows specify
the size of the result and are integral multiples or factors of the original dimensions,
and the keyword parameter Sample is set to use “nearest neighbor” sampling. If
Sample is not set, REBIN uses bilinear interpolation when magnifying, and neigh-
borhood averaging when reducing. Bilinear interpolation avoids the “chunky”
appearance of magnified pixels but takes more computer time.

For example, to display a 64-by-64 image named area, in a 512-by-512 pixel area
using bilinear interpolation:

TV, REBIN(area, 512, 512)

or without bilinear interpolation:

TV, REBIN(area, 512, 512, /Sample)

When reducing by a factor of n-by-m, REBIN averages each n-by-m pixel neigh-
borhood. An image may be magnified along one dimension, while at the same time
be reduced along the other dimension. For more information on REBIN, see the
PV-WAVE Reference.

124 PV-WAVE User’s Guide

Use CONGRID for Arbitrary Multiples (or Factors) of
Images

CONGRID works in a similar fashion, except that the final dimensions can be any
arbitrary size. The call to CONGRID using bilinear interpolation in the resampling
algorithm is:

new_image = CONGRID(old_image, cols, rows, /Interp)

where the parameters cols and rows specify the number of columns and rows
desired in the output image. If the Interp keyword is not set (i.e., it is equal to 0),
the nearest neighbor sampling method is used instead. For more information on
CONGRID, see the PV-WAVE Reference.

The ZOOM Function

There is one other way to magnify an image. On a window system display, the con-
tents of a window (or image) centered about the mouse position can be magnified
with the ZOOM procedure. For more information on ZOOM, see the PV-WAVE
Reference.

Retrieving Information from Images

Reading Images from the Display Device

The TVRD function reads the contents of the display device memory back into a
variable. One use for this capability is to build up a complex display using many
statements, and then read the resulting image back as a single unit for storage in a
file.

The TVRD function returns the contents of the specified rectangular portion of the
display subsystem’s memory. For example, if (X0 and Y0) are the starting column
and row, respectively, of the data to be read, and Nx and Ny are the number of col-
umns and rows, respectively, to read, then an Nx-by-Ny byte array can be stored in
the variable new_image with the command:

new_image = TVRD(X0, Y0, Nx, Ny)

If the system variable !Order is set to 0 then data are read from the bottom up, oth-
erwise data are read from the top down.

Using Color with Images 125

Examples of How to Use the TVRD Function

The following statement inverts the 100-by-100 area of the display starting at coor-
dinate position (200, 300):

TV, NOT TVRD(200, 300, 100, 100)

; Reverse area.

The following example copies part of an image, then resizes and displays the cop-
ied portion:

x=dist(300)

tvscl,x

x_rd=tvrd(0,0,150,150)

erase

tv,x_rd

tv,rebin(x_rd,300,300)

Not All Devices Can Read from the Display

Not all image devices are able to support reading pixels back from device memory.
If the current device has this ability, PV-WAVE sets the eighth bit of !D.Flags. The
following statement can be used to determine if the current device allows reading
from display memory:

TEST = !D.Flags AND 128

TEST will be nonzero if the device allows such operations.

Using the Cursor with Images: TVCRS

The TVCRS procedure manipulates the cursor of the image display. Normally, the
cursor is disabled and is not visible. Supplying TVCRS with one parameter enables
or disables the cursor; supplying TVCRS with two parameters enables the cursor
and places it on pixel location (x, y).

TVCRS also takes various keywords that affect how it positions the cursor. Nota-
bly, the keywords Data, Device, and Normal specify the coordinate system. For
details, see the entry for TVCRS in the PV-WAVE Reference.

Using Color with Images
Color is a valuable aid in the visual analysis process, because it can be used to take
advantage of the human brain’s capability to distinguish fine gradations of shade

126 PV-WAVE User’s Guide

and intensity. For this reason, color plays a very important role when viewing
images.

For color and gray-scale devices, the default is to display 8-bit images using the
color table B–W Linear (standard color table number 0).

UNIX and OpenVMS USERS On a monochrome display, by default, color
images are dithered. For more information about dithering, see Displaying Images
on 24-bit Devices (UNIX/OpenVMS) on page 130.

Color Systems

Most devices capable of displaying color use the RGB (red, green, blue) color sys-
tem. By default, PV-WAVE represents images in the RGB color system using
triplets of values for the red, the green, and the blue components of a particular
pixel’s color.

For more information about how image data is stored and transferred, refer to .

If you are interested in seeing a more complete discussion of color systems, refer
to Understanding Color Systems on page 273.

Using Color Tables to View Images

PV-WAVE provides two commands for viewing images: TV and TVSCL. These
two commands were introduced earlier in section Image Display Routines: TV and
TVSCL on page 120.

By default, images are displayed using color table number 0, B–W Linear. To use
a color table other than the default, load it prior to displaying the image, as shown
in the following example:

LOADCT, 5

; Load the predefined color table number 5, Standard Gamma-II.

TV, image

-or-

TVSCL, image

; Display the image using either the TV or the TVSCL command.

PV-WAVE includes an assortment of 16 predefined color tables with enough vari-
ety to produce visually pleasing results for many applications, or you can define
your own color table. To see a list of the color tables that come standard with
PV-WAVE, refer to Loading a Predefined Color Table: LOADCT on page 279.

Using Color with Images 127

Loading a Different Color Table

Most color workstations cannot display more than a certain number of colors (usu-
ally 256) at once. For this reason, color tables are used to map red, green, and blue
values into the available colors on the workstation.

You can use either the TVLCT or the LOADCT procedures to load the color table
on the current device:

• LOADCT — This procedure loads predefined color tables stored in the file
colors.tbl. These tables are located in:

(UNIX) <wavedir>/bin

(OpenVMS) <wavedir>:[BIN]

(Windows) <wavedir>\bin

Where <wavedir> is the main PV-WAVE directory.

• TVLCT — This procedure loads color tables stored in user-defined variables.
Once the variables are loaded into the color table, it is used like any other color
table.

For more information about loading the various color tables, see Experimenting
with Different Color Tables on page 277. For more information about creating cus-
tom color tables that emphasize some special trend or effect, see Modifying the
Color Tables on page 280.

Color Tables for Viewing Images

Be sure to experiment with the sixteen color tables that are included with
PV-WAVE. Frequently, a trend that is “hidden” when viewing an image with one
color table stands out with clarity when viewing the image with another color table.

The color tables that work best for viewing images are the ones that do not have
sudden transitions from one color table index to the next. Otherwise, you will prob-
ably see a strong banding or “contouring” effect that is created by the rapid
transitions between colors.

For an example of how to de-emphasize and moderate the color transitions in a
color table, refer to Smoothing the Color Transitions in a Color Table on page 284.

Not all Color Images are True-color Images (UNIX/

128 PV-WAVE User’s Guide

OpenVMS)

Windows USERS This section on true-color images does not pertain to the Win-
dows version of PV-WAVE.

Images may be output with 1, 2, 3, 4 or 8 bits per pixel, yielding 1, 2, 16, or 256
possible colors. In addition, color images are either: 1) pseudo-color or 2) true-
color. These two approaches to storing image information are contrasted in the fol-
lowing sections.

NOTE Not all output devices allow you to control the number of bits used to rep-
resent each pixel. To see if your device supports this capability, refer to the PV-
WAVE Reference.

Pseudo-color Images

A pseudo-color image is a two-dimensional image, each pixel of which is used to
index the color table, thereby obtaining an RGB value for each possible pixel value.
An 8-bit workstation monitor usually displays pseudo-color images.

In the case of pseudo-color images of less than 8 bits, the number of columns in the
image should be an exact multiple of the number of pixels per byte. In other words,
when displaying a 2-bit image the number of columns should be even, and 4-bit
images should have a number of columns that is a multiple of 4. If the image col-
umn size is not an exact multiple, extra pixels with a value of 255 are output at the
end of each row. This causes no problems if the color white is loaded into the last
color table entry, otherwise a stripe of the last (index number 255) color is drawn
to the right of the image.

True-color Images

A true-color image consists of an array with three dimensions, one of which has a
size of three, containing the three color components. It may be considered as three
two-dimensional images, one each for the red, green, and blue components. For
example a true-color n-by-m element image can be ordered in three ways: pixel
interleaved (3, n, m), row interleaved (n, 3, m), or image interleaved (n, m, 3). By
convention the first color is always red, the second green, and the last is blue.

True-color images are routed through the color table, just like pseudo-color
images. The red color table array contains the intensity translation table for the red
image, and so forth. Assuming that the color table has been loaded with the vectors
R, G, and B, a pixel with a color value of (r, g, b) is displayed with a color of (Rr,

Using Color with Images 129

Gg, Bb). A color table value of 255 represents maximum intensity, while 0 indicates
an absence of the color.

To pass the RGB pixel values without change, load the red, green, and blue color
tables with a ramp with a slope of 1.0:

TVLCT, INDGEN(256), INDGEN(256), INDGEN(256)

or with the LOADCT procedure:

LOADCT, 0

; Load the standard black/white color table, B–W Linear.

Use the True keyword of the TV and TVSCL procedures to indicate that the image
is a true-color image and to specify the dimension over which color is interleaved.
Allowed values are:

NOTE Image interleaving is also known as band interleaving.

To see specific examples showing how to use the True keyword, see the examples
in the section Displaying Images on 24-bit Devices (UNIX/OpenVMS) on page 130.

For more information about the different ways that image data may be stored, refer
to the section Input and Output of Image Data in Chapter 8 of the PV-WAVE
Programmer’s Guide.

Displaying Images on Monochrome Devices (UNIX/
OpenVMS)

Windows USERS This section on monochrome devices does not pertain to the
Windows version of PV-WAVE.

Images are automatically dithered when sent to some monochrome devices.
Dithering is a technique which increases the number of apparent brightness levels
at the expense of spatial resolution. Images with 256 gray levels are displayed on
a display with only two brightnesses, black and white, using halftoning techniques.

PV-WAVE supports dithering for output devices if their DEVICE procedures
accept the keywords described below:

1 pixel interleaving

2 row interleaving

3 image interleaving

130 PV-WAVE User’s Guide

Floyd — If present and nonzero, selects the Floyd-Steinberg method of dithering.
This algorithm distributes the error, caused by displaying intermediate shades in
either black or white, to surrounding pixels. This method generally gives the most
pleasing results but requires the most computation time.

Ordered — If present and nonzero, selects the Ordered Dither method of dithering.
This introduces a pseudo-random error into the display by using a 4-by-4 “dither”
matrix, yielding 16 apparent intensities. The Ordered Dither method is enabled by
default.

Threshold — If present and nonzero, specifies use of the threshold algorithm — the
simplest dithering method. The value of this keyword is the threshold to be used.
This algorithm simply compares each pixel against the given threshold, usually
128. If the pixel equals or exceeds the threshold, the display pixel is set to white;
otherwise, it is black.

NOTE PostScript handles dithering directly, and does not recognize the keywords
listed above.

Displaying Images on 24-bit Devices (UNIX/OpenVMS)

Windows USERS This section on 24-bit devices does not pertain to the Win-
dows version of PV-WAVE.

You can use PV-WAVE to display images in 24-bit color. Naturally, your worksta-
tion must support 24-bit color mode if you intend to view 24-bit images with
PV-WAVE. Similarly, hardcopy devices must support 24-bit color mode if you
intend to send 24-bit color output to them. To find out if your device has this capa-
bility, see the PV-WAVE Reference.

NOTE 24-bit images may be either square or rectangular; they can be either pixel,
row, or image interleaved. There is no restriction placed on the size of images by
PV-WAVE; the limiting factors are the maximum amount of virtual memory avail-
able to you by the operating system and the processing time required.

Refer to the examples later in this section for more information about how to read
and display 24-bit images with PV-WAVE. For a comparison of true-color and
pseudo-color images, refer to Not all Color Images are True-color Images (UNIX/
OpenVMS) on page 127.

Using Color with Images 131

Example: Read and Display a 24-bit Image-interleaved Image

This example reads 24-bit image data from a file, and then displays the image in a
window using 24-bit color. The 24-bit image is stored in a file as a set of stacked
images, 512-by-512-by-3 deep (first the 512-by-512 red plane, then the 512-by-
512 green plane, and then the 512-by-512 blue plane). The display device is an X-
compatible device, and is capable of displaying 24-bit color:

DEVICE, Direct_Color=24

; Define a DirectColor graphics window.

status = DC_READ_24_BIT(’jl.img’, img, Org=1)

; Read the 24-bit image from a file; DC_READ_24_BIT
; handles the opening and closing of the file. The variable ‘img’ now
; contains a 512-by-512-by-3 image array. Org=1 tells
; DC_READ_24_BIT that the file is image interleaved (as opposed to pixel interleaved).

TV, img, True = 3

-or-

TVSCL, img, True = 3

; Display the 24-bit image using either the TV or the TVSCL
; procedures. The True keyword specifies the dimension over which
; the color is interleaved.

Example: Read and Display a 24-bit Image Stored in Three Different
Files

This example reads 24-bit image data that has been stored in three separate image
files — one red, one green, and one blue. Each file is read separately and then com-
bined in one 3D array prior to displaying the 24-bit image. The data used in the
example comes from the red, green, and blue images of Boulder in the
$WAVE_DIR/data area. The use of environment variables in this example
makes it a UNIX-specific example, although it can easily be adapted for use in an
OpenVMS environment, as well:

DEVICE, Direct_Color=24

; Define a DirectColor graphics window.

red = MAKE_ARRAY(477, 512, /Byte)

green = red

blue = red

; Define three 477-by-512 variables to hold the image data.
; Each variable holds one “plane” of the data.

OPENR, 1, GETENV(’WAVE_DATA’) + $
’/boulder_red.img’

READU, 1, red

132 PV-WAVE User’s Guide

CLOSE, 1

OPENR, 1, GETENV(’WAVE_DATA’) + $
’/boulder_grn.img’

READU, 1, green

CLOSE, 1

OPENR, 1, GETENV(’WAVE_DATA’) + $
’/boulder_blu.img’

READU, 1, blue

CLOSE, 1

; Read each plane (red, green, and blue) of the image, placing the
; data in three different variables.

img = MAKE_ARRAY(477, 512, 3, /Byte)

img(*, *, 0) = red

img(*, *, 1) = green

img(*, *, 2) = blue

; Create a 3D 24-bit image array and transfer each plane of the
; image into it.

TV, img, True = 3

-or-

TVSCL, img, True = 3

; Display the 24-bit image using either the TV or the TVSCL
; procedures. The True keyword specifies the dimension over which
; the color is interleaved.

NOTE This example could have also used DC_READ_8_BIT to read the image
data, and then the data files would not have had to be explicitly opened and closed.
For more information about this function, see the DC_READ_8_BIT description
in the PV-WAVE Reference.

Gray Level Transformations
Each pixel, or cell, in an image exhibits an intensity. By modifying the distribution
of intensities it is possible to produce an image more suitable for a given applica-
tion than the original. Of course, a suitable image for one application is not
necessarily the best image for another application. The viewer is the ultimate judge
of how well a particular method works. Evaluating image quality is a highly sub-
jective process.

Gray Level Transformations 133

There are two ways to modify image intensities:

• modify the pixels and re-write the image on the display, or

• modify the color translation tables without changing the pixels.

The second method is faster because the color translation tables contain less infor-
mation than the pixel memory, but it is not always practical because the original
image may contain more discrete values than are representable in the display
memory.

Thresholding, the Simplest Gray-level Transformation

The simplest example of a gray-level transformation is to produce a two-level map-
ping from all the possible intensities into black and white. If an image stored in a
variable named A contains an object in which each pixel has an intensity value
greater than S, a scalar, and pixels that are not part of the object have a value less
than S, then the statement:

TVSCL, A GT S

will display all pixels in the object as full white and all background pixels as black.

The relational operators, EQ, NE, GE, GT, LE and LT, produce a value of 1 if the
relation is true and 0 if the relation is false. When applied to images, the relation is
applied to each pixel and an image of 1’s and 0’s results.

For example, the expression A GT S is an image with a value of 1 in each element
where the corresponding element of A is greater than S; otherwise the element is
set to 0. The TVSCL procedure then scales the image of 1’s and 0’s into 255’s and
0’s.

Of course, the opposite effect is obtained by the statement:

TVSCL, A LE S

All pixels whose value is greater than S but less than T are displayed as white with
the following statement:

TVSCL, (A GT S) AND (A LT T)

Thresholding using Color Table Modification

If the original image scales into the range of integers representable in the display
memory, the thresholding operators in the previous section may be implemented
more efficiently by changing the color translation tables. For example, if a 256-ele-
ment gray scale color table is appropriate, elements less than S become white with
the following statements:

T = 255 * (INDGEN(256) LT S)

134 PV-WAVE User’s Guide

; Elements less than S are 255, others are 0.

TVLCT, T, T, T

; Load the color table from T.

Contrast Enhancement

An image may be contrast-enhanced so that any subrange of pixel values are scaled
to fill the entire range of displayed brightnesses. For instance, if the image in vari-
able A contains an object superimposed on a varying background, and the pixel
values in the object range from a value of S to the brightest value in the entire
image, the statement:

TVSCL, A > S

will use the entire range of display brightnesses to display the object.

The > operator, called the maximum operator, yields a result equal to the larger of
its two operands. The expression A > S is an image in which each pixel in A less
than S is set to S. S becomes the new minimum intensity. The TVSCL procedure
then scales the new image from 0 to 255 before loading it into the display. Again,
the image A is not changed.

If, for example, the object in A has values from 2.6 to 9.4, the statement:

TVSCL, A > 2.6 < 9.4

truncates the image so that 2.6 is the new minimum and 9.4 is the new maximum
before scaling and display. Pixels with intensities of 9.4 or larger will be displayed
at full brightness, while those with intensities of 2.6 or less are converted to mini-
mum brightness.

Using BYTSCL to Enhance Contrast

The BYTSCL function can be used to enhance the contrast of images in a more effi-
cient manner than the examples above. The result of this function is a byte image
made by scaling the input image as follows:

Rx,y = T (Ix,y – Min) / (Max – Min)

where Ix,y is the intensity value at image location (x, y). The value of T may be spec-
ified using the Top keyword parameter. Its default value is 255.

If BYTSCL is called with only one parameter, the maximum and minimum values
are obtained by scanning the image parameter. You may directly specify the mini-
mum and maximum values with keyword parameters. For example, the statement

TV, BYTSCL(A, MIN = 2.6, MAX = 9.4)

Gray Level Transformations 135

has exactly the same effect as the TVSCL statement in the previous section,
stretching the contrast of pixels ranging from 2.6 to 9.4, but this statement is con-
siderably quicker. Using BYTSCL is more efficient because the range truncation
and scaling are performed in one pass, rather than in the four required by the
TVSCL statement.

Modifying Color Tables to Enhance Contrast

If the image contains pixels in the range of 0 to 255, as in the case of an 8-bit dis-
play, or it can be transformed to 256 or fewer values, it is faster to modify the
display color lookup tables rather than transforming the image in the computer and
then loading the display. The STRETCH procedure allows any range of values
between 0 and 255 to be linearly expanded to fill the display range.

For more information about stretching color tables, see Stretching the Color Table
on page 284, or refer to the STRETCH procedure in the PV-WAVE Reference.

Histogram Equalization

In many images, most pixels reside in a few small subranges of the possible values.
By spreading the distribution so that each range of pixel values contains an approx-
imately equal number of members, the information content of the display is
maximized.

To equalize the histogram of display values, the count-intensity histogram of the
image is required. This is a vector in which the ith element contains the number of
pixels with an intensity equal to the minimum pixel value of the image plus i. The
vector is of longword type and has one more element than the difference between
the maximum and minimum values in the image. (This assumes a binsize of 1 and
an image that is not of byte type.) The sum of all the elements in the vector is equal
to the number of pixels in the image.

The HISTOGRAM function directly returns the count-intensity histogram. For
example, to define a new variable H that contains the count-intensity histogram of
the image A, type:

H = HISTOGRAM(A)

Optional keyword parameters may be included to specify the range and binsize,
determine the minimum value of the image, etc.

From the count-intensity histogram, the cumulative distribution function is com-
puted with the statements:

P = H

FOR i = 1, N_ELEMENTS(P)-1 DO P(i)= P(i) + P(i-1)

136 PV-WAVE User’s Guide

Pi now contains the number of pixels in the original image with intensities less than
or equal to i:

Pi increases monotonically from the minimum value of the image to the number of
pixels in the image.

By simply normalizing P so that its maximum element has a value of 255 and its
minimum element has a value of 0, the gray level transformation necessary to dis-
play the image with histogram equalization is obtained:

P = BYTSCL(P)

The statement:

TVLCT, P, P, P

loads the three display color translation tables with the transformed function. The
result is a black and white histogram- equalized display.

The HIST_EQUAL_CT procedure loads the color tables with a histogram equal-
ized distribution, as described above. If called with no parameters, this procedure
allows the user to mark a rectangular region of the display with the mouse, which
is then used to form the distribution. It can also be called with an image as its
parameter, in which case it uses the pixel distribution of the entire image.

Example of Histogram Equalization

The top plot of Figure 6-1 shows the count-intensity histogram of an original aerial
image of the New York city area. The dashed line is the cumulative integral of this
function, showing the number of pixels in the image with values less than or equal
to each pixel value.

i H j
j 0=

i

∑=

Gray Level Transformations 137

Figure 6-1 Histograms of the original and histogram-equalized images.

It is apparent that the pixel intensities range from approximately 40 to 140, imply-
ing that only about 40% of the usable brightness range of the display is used.

The bottom plot shows the pixel distribution histogram of the histogram-equalized
image. Note that the histogram is spread over a much larger range and that the
shape is somewhat flattened. Not all the values in this histogram are equal. This is
due to the discrete bin size of the histogram and because there are unpopulated
pixel ranges.

The cumulative integral of the histogram is nearly a straight line, from the origin
to an x value of the maximum pixel value and a y value equal to the number of pix-
els, as it should be.

The HIST_EQUAL function performs histogram equalization using this method.
The following statement uses HIST_EQUAL to transform the image A and then
display the result:

TV, HIST_EQUAL(A)

As described above, the HIST_EQUAL_CT procedure is more efficient because it
modifies the color tables, rather than the image. The following two statements dis-
play the image, and then load the modified color tables:

TV, A

HIST_EQUAL_CT, A

Note that this method will only work if the original image contains integers in the
range of 0 to 255.

Original Histogram

0 50 100 150 200
Pixel Value

0

1.0•104

2.0•104

3.0•104

4.0•104

5.0•104

P
op

ul
at

io
n

0
2.0•105

4.0•105

6.0•105

8.0•105

1.0•106
1.2•106

C
um

ul
at

iv
e

P
op

ul
at

io
n

Cumulative

Histogram Equalized

0 50 100 150 200 250 300
Pixel Value

0

1.0•104

2.0•104

3.0•104

4.0•104

5.0•104

P
op

ul
at

io
n

0
2.0•105

4.0•105

6.0•105

8.0•105

1.0•106
1.2•106

C
um

ul
at

iv
e

P
op

ul
at

io
n

Cumulative

138 PV-WAVE User’s Guide

Image Smoothing
The SMOOTH and MEDIAN functions are used to smooth images.

The SMOOTH Function

Images may be rapidly smoothed with the SMOOTH function. SMOOTH performs
equally weighted smoothing using a square neighborhood of a given odd width. If
A is an image of any type or size, the statement:

TVSCL, SMOOTH(A, 3)

displays the result of smoothing the image A with a 3-by-3 boxcar average.
Smoothing with the triangular kernel:

which approximates a two-dimensional triangle is easily implemented using the
CONVOL function by the statement:

TVSCL, CONVOL(A,[[1,2,1],[2,4,2],[1,2,1]])

The first parameter, A, in the CONVOL function call, usually an image, is con-
volved with the second parameter, usually a much smaller kernel array of weights.
The second parameter:

[[1,2,1],[2,4,2],[1,2,1]]

is the notation for a 3-by-3 array containing the kernel. The bracket [] symbols are
the array concatenation operators. Elements between the brackets, which may be
scalars, vectors or arrays, are concatenated.

The same technique may be used for other types of smoothing, interpolation, or dif-
ferentiation by merely changing the size and weights of the kernel parameter.

Median Smoothing with the MEDIAN Function

Median smoothing is a useful technique that is similar to mean smoothing as it is
implemented by the SMOOTH function, except that the value of each pixel is
replaced by the median of the N-by-N neighborhood rather than by the average.

Median smoothing, unlike mean smoothing, does not blur edges or features whose
size is larger than the neighborhood. Also, median smoothing eliminates, without

1 2 3

2 4 2

1 2 1

Image Sharpening 139

spreading, “salt and pepper” noise (isolated pixels containing extreme values).
Median smoothing is implemented with the MEDIAN function:

TVSCL, MEDIAN(A, 3)

Figure 6-2 shows the effect of median and mean filters on a one-dimensional vector
containing an impulse step function. Notice how the impulse is eliminated by the
median filter rather than spread over the neighborhood of the filter as it is in the
mean filter.

Figure 6-2 Signal response using median and mean filtering.

Image Sharpening
This section discusses some image sharpening methods. For more details on the
functions described here, see the PV-WAVE Reference.

The ROBERTS Function

An image may be sharpened (its edges or high spatial frequency components
enhanced) by differentiation. One approximation to the derivative or gradient of the
image is the Roberts Gradient, a form of cross difference, which is computed using
the formula:

The ROBERTS function returns this result.

Filter Responses

0 20 40
0

50

100

150

200

Original

5 Point Mean

5 Point Median

Fx y,() Fx y, Fx 1 y 1+,+– Fx 1 y,+ Fx y 1+,–+=

140 PV-WAVE User’s Guide

The SOBEL Function

Another commonly used gradient operator is the Sobel operator. It operates over a
3-by-3 region, making it less sensitive to noise than an operator with a smaller
neighborhood. The SOBEL function returns an approximation to the Sobel
operator:

where the notation,

indicates the absolute value of the sum of the pixels in the 3-by-3 neighborhood
surrounding the pixel at x, y, multiplied by the respective weights. The first term
approximates the gradient in the y direction and the second term approximates the
gradient in the x direction.

Unsharp Masking Method

Another method of sharpening images is unsharp masking. This method subtracts
a smoothed image (which contains only low frequency components) from the orig-
inal image, leaving an image containing only high frequency components. This
process emphasizes the edges and small, sharp features. To unsharp mask and dis-
play an image using a 3-by-3 neighborhood, use the command:

TVSCL, A - SMOOTH(A,3)

The CONVOL Function

The same result can be obtained by convolving the image with the kernel:

Sx y,

1– 2– 1–

0 0 0

1 2 1

1– 0 1

2– 0 2

1– 0 1

+=

w0 w1 w2

w3 w4 w5

w6 w7 w8

1
9

 –
1
9

 –
1
9

 –

1
9

 –
8
9
--- 1

9

 –

1
9

 –
1
9

 –
1
9

 –

Frequency Domain Techniques 141

or:

TVSCL, CONVOL(A, [[–1,–1,–1],[–1,8,–1], [–1,–1,–1]],9)

The time required by the CONVOL function can become excessively long when
the kernel or image is large. The time required is proportional to n2m2, where n is
the size of the kernel and m is the size of the square image. Doubling the size of the
kernel increases the time by a factor of four. The algorithm used in the SMOOTH
function requires time in proportion to 2nm2, implying that it is almost always
more efficient to use SMOOTH rather than CONVOL where possible.

Frequency Domain Techniques
Filtering in the frequency domain is a flexible technique that is used for smoothing,
sharpening, deblurring, and image restoration. The three basic steps in image fil-
tering are:

❑ Transforming the image into the frequency domain.

❑ Multiplying the resulting complex image by a filter that usually has only real
values.

❑ Re-transforming this product back into the spatial domain, yielding the filtered
image.

Assuming that A is the image to be filtered and filter is the variable containing
the filter, this process is expressed by:

result = FFT(FFT(A, -1) * filter, 1)

The variable A may be of any data type except string; filter is a floating type
filter and has the same dimensions as A; and result is the resulting image which
is of complex type and has the same size as A. The second parameter of FFT spec-
ifies the direction of the transform: –1 for space to frequency; and +1 for frequency
to space.

This process is equivalent to convolving the image with the spatial equivalent of
the filter in the spatial domain, but is much quicker than simple convolution for ker-
nels larger than approximately 9-by-9.

CAUTION Try to avoid wrap-around artifacts when filtering and convolving in the
frequency domain. In particular, images must be properly windowed and sampled
before applying the Fourier Transform or false and misleading values will result.
For one example of windowing, see the source code for the HANNING procedure
in the Standard Library.

142 PV-WAVE User’s Guide

Filtering Images

Many types of images can be improved by filtering. PV-WAVE’s array-oriented
operators and functions make it particularly easy to design and use filters. Many
commonly used filters take advantage of what is called the frequency image. The
frequency image, D, of an n-by-n array in which each pixel element contains the
spatial frequency of the pixel in units of cycles per pixel is given by:

where:

The Standard Library function DIST evaluates the function above and returns a fre-
quency image. For example, to obtain a frequency image to use with a filter for a
256-by-256 image, use the command:

D = DIST(256)

Some of the many filters which can be computed from the frequency image in one
step are given below. The mathematical description of the filter is given first, fol-
lowed by the PV-WAVE code to implement it.

• Ideal low pass filter, absolute cutoff at frequency D0:

filter = D LT D0

• Ideal high pass filter, absolute cutoff at D0:

filter = D GT D0

• Ideal bandpass filter, absolute cutoff at DL and DH:

Dx y, x' n⁄()2 y' n⁄()2+=

x'
x if x n 2⁄≤()
n x otherwise–

=

y'
x if x n 2⁄≤()
n y otherwise–

=

filteru v,
1 if Du v, D0<()

0 otherwise
=

filteru v,
1 if Du v, D0>()

0 otherwise
=

Frequency Domain Techniques 143

filter = (D GT DL) AND (D LT DH)

• Butterworth low pass filter of order n, cutoff at D0: (The frequency response at
the cutoff frequency is equal to 50% of the maximum.)

filter = 1/(1+(D/D0) ^(2*N))

• Butterworth high pass filter of order n, cutoff at D – 0:

filter = 1/ (1 + (D0/D) ^ (2*N))

• Butterworth bandpass filter, order n, center frequency is C, width of D0:

filter = 1/ (1+((D-C)/D0) ^ (2*N))

• Exponential low pass filter of order n:

filter = EXP(-(D/D0) ^ N)

• Exponential high pass filter of order n:

filter = EXP(- (D0/D) ^ N)

The filters described here must be applied in the frequency domain. To use these
filters the image must be transformed to the frequency domain with the Fast Fourier
Transform, multiplied by the filter, and then transformed back to the spatial
domain.

filteru v,
1 if DL Du v, DH< <()

0 otherwise
=

filteru v,
1

1 Du v, D0⁄[]2n+
--=

filteru v,
1

1 D0 Du v,⁄[]2n+
--=

filteru v,
1

1 Du v, C–() D0⁄[]2n+
---=

filteru v, e Dx y, D0⁄()n–=

filteru v, e D0 Dx y,⁄()n–=

144 PV-WAVE User’s Guide

The following command is used to apply a filter to the variable image:

filtered_image = FFT(FFT(image, -1) * filter, 1)

Displaying the Fourier Spectrum

PV-WAVE makes it easy to calculate the Fourier spectrum of an image.
Figure 6-3 shows an aerial photograph on the left and its logarithmically scaled
Fourier spectrum on the right. Note that the diagonal, vertical, and horizontal lines
in the Fourier spectrum correspond to the roads in the original image and are
perpendicular to them.

Figure 6-3 An aerial photograph and its Fourier spectrum.

The Fourier spectrum is also displayed in Figure 6-4 as a surface plot.

Frequency Domain Techniques 145

Figure 6-4 Surface plot of the aerial photograph’s Fourier spectrum.

It is customary to display the Fourier or power spectrum of images with the DC fre-
quency component in the center of the image, as is done here. This is easily
accomplished by using the SHIFT function to shift the origin of the 256-by-256
image to the center. The Fourier spectrum in the right side of Figure 6-3 is pro-
duced with the statement:

TVSCL, SHIFT(ALOG(ABS(FFT(A, -1))),256, 256)

This statement performs the following operations:

❑ The FFT function transforms the image into the frequency domain.

❑ The ABS function calculates the magnitude of each complex-valued pixel.

❑ The ALOG function returns the natural logarithm of each pixel.

❑ The SHIFT function shifts the image so the point with a subscript of (0, 0) is
in the center.

❑ The TVSCL procedure scales and displays the result.

146 PV-WAVE User’s Guide

Geometric Transformations
Geometric transformations rearrange the elements of an image. Some examples of
commonly used geometric transformations are: magnification, rotation, projection
to different coordinate systems, and correction of distortions.

The definition of a geometric transformation may be written:

g(x, y) = f(u, v) = f[a(x, y), b(x, y)]

where f(u, v) is the input image, g(x, y) is the output image, and the functions a and
b specify the spatial transformation that relate the (x, y) coordinate system of the
output image to the (u, v) coordinates of the input image.

Rotating and Transposing with the ROTATE Function

The simple and common operations of rotation by multiples of 90 degrees and/or
transposition are performed most efficiently by the ROTATE function. The calling
sequence for the ROTATE function is

ROTATE(image, rotation)

where image is the input array and rotation is an integer value specifying one of the
eight possible combinations of axis interchange and reversal.

Example of ROTATE Function Usage

For example, a 90 degree counterclockwise rotation of an m-by-n image is
expressed in the above notation by:

rotated_image = ROTATE(image, 1)

You can also use the ROT function to rotate an image. It uses POLY_2D (described
in the next section) to rotate an image about a specified point with optional magni-
fication or reduction. The rotation angle is not restricted to multiples of 90 degrees
as in ROTATE, but ROT is slower. For more information on these functions, see the
PV-WAVE Reference.

Geometric Transformations with the POLY_2D Function

The POLY_2D function provides an efficient method of performing geometric
transformations, assuming the functions a and b can be expressed as N-degree
polynomials of x and y:

Geometric Transformations 147

Either the nearest neighbor or bilinear interpolation methods may be selected. The
calling sequence and a brief description of the input parameters for the POLY_2D
function is as follows.

output_image = POLY_2D(image, c, d [, interp [, dimx, dimy]])

Where

image — The input image.

c and d — The arrays containing the polynomial coefficients. Each array
must contain (N + 1)2 elements. For example, for a linear transformation
C and D contain four elements, and may be a two-by-two array or a four-
element vector. Ci,j contains the coefficient used to determine u, and is the
weight of the term xiyi. The POLYWARP procedure may be used to fit (u,
v) as a function of (x, y). It returns the coefficient arrays C and D.

interp — If present and non-zero, selects bilinear interpolation, otherwise
the nearest neighbor method is used. For the linear case (i.e. N = 1) bilinear
interpolation requires approximately twice as much time as does the near-
est neighbor method.

dimx and dimy — Specify the dimensions of the result. If omitted, the result
will have the same dimensions as the original image.

In addition, the output keyword parameter Missing may be included to specify the
output value of pixels whose u, v coordinates are outside the input image. If this
keyword parameter is not present, missing values are extrapolated from the edges
of the input image. For more detailed information on the POLY_2D function, refer
to the function description in the PV-WAVE Reference.

Efficiency and Accuracy of Interpolation

POLY_2D is relatively efficient; however, some of this efficiency is gained at the
expense of accuracy. Each output pixel is mapped to the input image and the near-
est pixel is used for the result. This method is called the nearest neighbor method.

a x y,() Ci j, x jyi

j 0=

N

∑
i 0=

N

∑= =

b x y,() Di j, x jyi

j 0=

N

∑
i 0=

N

∑= =

148 PV-WAVE User’s Guide

With high magnifications of regular structure, objectionable sawtooth edges result.
Bilinear interpolation avoids this effect by determining the value of each output
pixel by interpolating from the four neighbors of actual location in the input image
at the expense of additional computations.

Correcting Linear Distortion with Control Points

The following example uses POLY_2D to correct a linear distortion using control
points. A calibration image containing n known points is acquired by a system with
linear distortion. Given the original position of each point in the calibration image,
(x, y) and its measured coordinates in the acquired image, (u, v), it is possible to
obtain the polynomial coefficients required to transform the acquired image back
to the original.

The value of n must be at least four to determine the coefficients of a first degree
transformation, as there are (n + 1)2 coefficients in each array, each of which is an
unknown to be solved. In this example, four points are measured which describe
the pixel coordinates of the corners of a box in the undistorted calibration image:
(20, 20), (40, 20), (40, 40), (20, 40). The measured coordinates of the corners of
the box, which is distorted into the shape of a trapezoid in the acquired image, are
assumed to be: (25, 25), (55, 25), (60, 50), (25, 50). See Figure 6-5.

The equations relating the (u, v) coordinates to (x, y) are:

, i = 0, 1, 2, 3

, i = 0, 1, 2, 3

We can write the four equations for ui as:

U = ZC

ui c0 c1yi c2xi c3yixi+ + +=

i d0 d1yi d2xi d3yixi+ + +=

Geometric Transformations 149

Figure 6-5 Example of geometric distortion.

where C = [c0, c1, c2, c3], and

Solving for C and D:

C = Z–1U D = Z–1V

The statements implementing this algorithm are:

x = [20, 40, 40, 20]

; Define undistorted x coordinates of box.

y = [20, 20, 40, 40]

; ... and y.

u = [25, 55, 60, 25]

; Measured coordinates...

v = [25, 25, 50, 50]

z = FLTARR(4,4)

; Define the Z matrix.

Example of Distortion Correction

0 20 40 60 80
0

20

40

60

80

u
0
v

0
u

1
v

1

u
2
v

2
u

3
v

3

x
0
y

0
x

1
y

1

x
2
y

2
x

3
y

3

Z

1 y0 x0 x0y0

1 y1 x1 x1y1

1 y2 x2 x2y2

1 y3 x3 x3y3

=

150 PV-WAVE User’s Guide

FOR j=0,1 DO for k=0,1 DO z(0,j+2*k) = x^k * y^j

; Fill it, one row at a time.

image = BYTARR(100, 100)

; Create a 100-by-100 image.

image(POLYFILLV(u, v, 100, 100)) = 128

; Simulate the acquired image by filling the pixels inside the (u, v) box
; with the value 128.

q = POLY_2D(image, (c = INVERT(z) # u), $
(d = INVERT(z) # v), 1)

; Solve the equations, using the INVERT function, and
; apply the geometric transformation, yielding image q, saving
; coefficients in c and d.

The computed values of c and d are [0.0, –0.25, 1.25, 0.0125], and [0.0, 1.25, 0.0,
0.0].

Figure 6-6 illustrates the application of this geometric transformation to an image.
The left side of this figure contains the trapezoid defined by the distorted coordi-
nates of the “acquired” image. The right side is the result of the transformation, as
the trapezoid is warped back to the original rectangular shape.

Figure 6-6 Correcting a geometric transformation.

The POLYWARP procedure may be used to obtain the polynomial coefficients in
a more general manner. It is not restricted to first- order polynomials, and it com-
putes a least squares fit if there are more than (n + 1)2 control points. For more
information on the POLYWARP procedure, see its description in the PV-WAVE
Reference.

Mathematical Morphology 151

Mathematical Morphology
Mathematical morphology is an approach to image processing that is based on
shape. If mathematical morphology is used appropriately, image data can be sim-
plified without losing essential shape characteristics. It plays a particularly
important role in those image processing applications that depend on object or fea-
ture recognition. For example, some manufacturing defects correlate directly with
shape and can be discovered with this approach to image processing.

Mathematical morphology is based on set theory; sets represent the various shapes
that are manifested on binary or gray scale images. Dilation is the morphological
transformation that combines two sets using vector addition of set elements. It is
implemented with the DILATE function. The dilation operator is commonly
known as the “fill,” “expand,” or “grow” operator. It is used to fill “holes” in the
image that are equal to or smaller in size than a particular structuring element.

Erosion is the morphological opposite of dilation. It is the morphological transfor-
mation that combines two sets using the vector subtraction of set elements. Erosion
is implemented with the ERODE function. The erosion operator is commonly
known as the “shrink” or “reduce” operator. It is used to reduce islands smaller than
a particular structuring element.

Complete descriptions of the DILATE and ERODE functions are given in the PV-
WAVE Reference. Additional information on mathematical morphology in general
can be found in the article “Image Analysis Using Mathematical Morphology” by
Haralick, Sternberg, and Zhuang, found in the IEEE Transaction on Pattern Anal-
ysis and Machine Intelligence, Vol. PAMI-9, No.4, July, 1987.

152 PV-WAVE User’s Guide

153

CHAPTER

7

Rendering Techniques
PV-WAVE can render 3D geometric and volumetric data through the use of your
graphics hardware using PV-WAVE's integration with the Visualization Toolkit
(VTK) or through software using rendering algorithms built into PV-WAVE.

Besides faster 3D graphics, VTK supports techniques such as the ability to rotate
and manipulate 3D views in real-time, do real-time displays of volumetric data, and
enhanced functionality for static 3D rendering in 24-bit color. The end user can
gain insight about their data though interacting, visualizing and analyzing data real
time with the VTK utilities.

The advanced rendering routines built into PV-WAVE use software to display geo-
metric and volumetric data. Three rendering techniques are available including;
polygon and volume rendering and ray-tracing techniques. In addition, gridding
algorithms and coordinate conversion functions are available to prepare data for
rendering.

Hardware Rendering

Introduction

PV-WAVE users can create high quality, interactive graphics through the use of the
PV-WAVE link to the Visualization Toolkit (VTK). The Visualization Toolkit is an
Open Source toolkit for creating both simple and complex visualizations in 3D
using OpenGL, a low-level software interface to graphics hardware, for high-per-
formance, accelerated graphics. In addition to convenience routines that have been
written to access some of the more common VTK utilities, all of the functionality

154 PV-WAVE User’s Guide

available in the Visualization Toolkit is available to PV-WAVE users. The two
products complement each other well. PV-WAVE excels at data access, data
manipulation, numerical algorithms, data filtering, user interface development, and
many interactive 2D graphical tasks. The Visualization Toolkit is a best-of-breed
tool for creating complex 3D visualizations. Together they provide a simple and
quick way to build tools for Visual Data Analysis.

The VTK toolkit was integrated into PV-WAVE through the use of a Tcl shell as an
intermediary. Tcl is a popular scripting language, see http://www.scriptics.com for
more information. The VTK toolkit already has a binding for the Tcl language. PV-
WAVE spawns a Tcl shell and communicates with it using sockets, sending VTK
commands formatted for Tcl.

The following diagram shows how the two routines vtkINIT and vtkCOMMAND
are used to create the Tcl shell and send commands to it, including VTK
commands:

The vtkCOMMAND procedure is used in PV-WAVE to send individual commands
to the shell, and higher level wrappers have been built around this to allow many
common PV-WAVE plotting commands to be accessed in a manner similar to exist-
ing PV-WAVE commands. Some of these commands include vtkWINDOW,
vtkLIGHT, vtkPLOTS, vtkSURFACE, and vtkPOLYSHADE. The full power of
the VTK visualization pipeline can still be accessed but requires specific knowl-
edge of the VTK objects and methods.

A set of commands for packaging data into one of five supported data types in VTK
is also provided, allowing data to be easily sent from PV-WAVE to VTK.

Many procedures have a “Name” keyword which allows you to either choose a
name for the object you are creating or return a generated one. This acts as a bridge
between the high-level PV-WAVE wrappers and low-level VTK functionality. Thus

Hardware Rendering 155

you can create a vtkSURFACE object and later use low-level VTK commands to
change specific properties of this object.

Currently the VTK windows can not be integrated into a user interface created with
PV-WAVE widgets. However, widgets can be used to size, position and annotate an
object in a VTK window by passing keywords from the widget to the
vtkWINDOW.

NOTE the PV-WAVE link to the Visualization Toolkit is available on Windows
and most UNIX platforms

Additional Information

You can download the Visualization Toolkit and reference documentation from
<http:// public.kitware.com>. You can also purchase the following VTK manuals
at this site:

The Visualization Toolkit User's Guide
William J. Schroeder, Lisa S. Avila,
Kenneth M. Martin, William A. Hoffman,
C. Charles Law
380 pages, CD-ROM with software/data
ISBN 1-930934-05-X
Kitware, Inc.

The Visualization Toolkit
An Object-Oriented Approach To 3D Graphics
Will Schroeder, Ken Martin, Bill Lorensen
646 pages, 40 color pages, CD-ROM with software/data
ISBN 0-13-954694-4
Prentice Hall

The Visualization Toolkit User's Guide is the best manual for details on using VTK.
The Visualization Toolkit manual has more general information on computer graph-
ics and scientific visualization.

Demonstration Programs

There are three sources for advanced rendering demonstration programs:

• You can run the demonstration programs and look at the code in:

(UNIX) <vni_dir>/vtk-3_2/demo

156 PV-WAVE User’s Guide

(Windows) %VNI_DIR%\vtk-3_2\demo

Where <VNI_DIR> is the main Visual Numerics directory.

These routines can be easily modified to work with your own data.

Initializing VTK and Managing VTK Windows

The routine vtkINIT is used to spawn a Tcl process through which VTK commands
may be sent. The spawned process will continue executing until vtkCLOSE is
called. Repeatedly calling vtkINIT will not cause multiple Tcl processes to be cre-
ated; only one will be allowed to run at any given time for a PV-WAVE session. You
can use the /Print parameter to vtkINIT to cause debug information from the Tcl
process to be logged in the PV-WAVE console. Most VTK wrapper routines, with
the exception of vtkCOMMAND and the dataset creation routines, will automati-
cally call vtkINIT for you if you have not done so manually.

NOTE You must call vtkCLOSE before exiting PV-WAVE or else an orphaned Tcl
process will be left running on your machine. This process will only go away if you
manually kill it or log off of your computer.

To create a VTK window in which 3D OpenGL graphics can be rendered, use the
vtkWINDOW command. It is used in a manner similar to the WINDOW command
for PV-WAVE windows. You can specify a window index to be used to refer to this
window, or use /Free to allow an unused index to be chosen for you. There are two
important keywords for vtkWINDOW that affect how 3D objects are displayed in
it: /NoRender and /NoInteract.

Normally VTK windows operate much like PV-WAVE windows, in that as you
issue commands to add plots, annotation, axes and other objects to the window, the
results are immediately rendered and displayed. For performance reasons you do
not always want to do this for VTK windows, and would rather add all of the
objects to be rendered before actually rendering and displaying the scene. If you
specify /NoRender in a call to vtkWINDOW, then you are turning off automatic
rendering until you explicitly call the vtkRENDERWINDOW routine. Use of the
/NoRender routine does not affect calls to the low-level vtkCOMMAND routine.

By default VTK windows have a set of mouse interactions built into them. This
allows you to rotate, zoom, and pan your view interactively. If you do not want
these default interactions then specify /NoInteract with vtkWINDOW and any
changes in camera view will be under programmatic control only. The default
mouse interaction for VTK windows including the following features:

Hardware Rendering 157

• Keypress j / Keypress t: toggles between joystick (position sensitive) and track-
ball (motion sensitive) styles. In joystick style, motion occurs continuously as
long as a mouse button is pressed. In trackball style, motion occurs when the
mouse button is pressed and the mouse pointer moves.

• Keypress c / Keypress o: toggles between camera and object (actor) modes. In
camera mode, mouse events affect the camera position and focal point. In
object mode, mouse events affect the actor that is under the mouse pointer.

• Button 1: rotates the camera around its focal point (if camera mode) or rotate
the actor around its origin (if actor mode). The rotation is in the direction
defined from the center of the renderer's viewport towards the mouse position.
In joystick mode, the magnitude of the rotation is determined by the distance
the mouse is from the center of the render window.

• Button 2: pans the camera (if camera mode) or translate the actor (if object
mode). In joystick mode, the direction of pan or translation is from the center
of the viewport towards the mouse position. In trackball mode, the direction of
motion is the direction the mouse moves. (Note: with 2-button mice, pan is
defined as <Shift>-Button 1.)

• Button 3: zooms the camera (if camera mode) or scale the actor (if object
mode). Zoom in/increase scale if the mouse position is in the top half of the
viewport; zoom out/decrease scale if the mouse position is in the bottom half.
In joystick mode, the amount of zoom is controlled by the distance of the
mouse pointer from the horizontal centerline of the window.

• Keypress r: resets the camera view along the current view direction. Centers
the actors and moves the camera so that all actors are visible.

• Keypress s: modifies the representation of all actors so that they are surfaces.

• Keypress w: modifies the representation of all actors so that they are wireframe.

The following routines operate exactly like their PV-WAVE counterparts to man-
age windows:

vtkERASE Erases the VTK window to its background color or
specify a new background color.

vtkWSET Makes a VTK window the current one to be drawn to in
subsequent calls to VTK wrapper routines.

vtkWDELETE Deletes a VTK window (but does not close the Tcl pro-
cess, you still must call vtkCLOSE before exiting PV-
WAVE).

158 PV-WAVE User’s Guide

Saving the Contents of VTK Windows

In order to save the contents of VTK windows, you can use the procedure vtkPP-
MWRITE. This causes the current contents of the selected or current VTK window
to be saved to a file in PPM (Portable PixMap) format. This is the only format sup-
ported by VTK for saving the contents of VTK windows. The corresponding
function vtkPPMREAD can be used to read a PPM file and return a 24 bit image
that can be displayed in PV-WAVE. The routine vtkTVRD functions much as the
PV-WAVE TVRD routine but is a wrapper to calls to vtkPPMWRITE and
vtkPPMREAD.

NOTE The vtkPPMWRITE procedure will save exactly what you see on your
screen for a VTK window, including the contents of any windows that are partially
or fully obscuring the VTK window. You must make sure the VTK window is fully
visible for vtkPPMWRITE or vtkTVRD to work properly. This is a result of the
underlying VTK implementation and there is not a way around this at present.

High-level Interface Routines

The following routines are PV-WAVE wrappers which mimic the functionality of
common PV-WAVE graphics routines. The source code for these routines are avail-
able as PV-WAVE procedures and act as good examples of using the low-level
VTK functionality.

vtkLIGHT Adds a light source to a VTK scene

vtkCAMERA Adds a customized camera to a VTK scene

vtkAXES Adds a set of 3 axes to a VTK scene

vtkPLOTS Plots 3D lines and points

vtkTEXT Adds text annotation to a VTK scene

vtkPOLYSHADE Displays vertex/polygon lists which describe polygonal
objects

vtkSURFACE Plots shaded and wireframe surfaces with axes

vtkSCATTER Plots points in 3D with axes

Hardware Rendering 159

Specifying Color

In the PV-WAVE wrappers for VTK there are a number of ways to specify colors.
The VTK windows always display in 24-bit color, although we can use the PV-
WAVE color table values as we will see. For parameters that expect as input a sin-
gle color value, the color can be specified in any one of the following ways (in this
case for the color red):

For parameters that expect as input a 1D or 2D array of color values, such as the
Shades keyword for vtkSURFACE or Color keyword for vtkPOLYSHADE, the
color can be specified as arrays of the above. For example for vtkSURFACE we
could pass a 2D array of short integers to make use of the PV-WAVE color table,
or a (3, m, n) array of float values between 0.0 and 1.0.

Low-level Interface Routines

For many users, the above high-level VTK wrapper routines will provide sufficient
functionality for creating 3D charts similar to what is already available in PV-
WAVE, but now using accelerated OpenGL graphics. Others may want to make use
of the vast amount of functionality available in VTK including source code devel-
oped by other VTK users. All of this is possible using the low-level interface
provided to VTK through PV-WAVE. If you intend to use the low-level functional-
ity available in VTK you will need to obtain documentation on VTK. See the
references in the INTRODUCTION (page 153) for more details.

‘red’ See the file <vni>/vtk-3_2/lib/vtkcolornames.pro for a
complete list of supported color names, where <vni> is the
path to the PV-WAVE installation.

‘FF0000’XL A long integer hexadecimal value specifying the 24-bit color.

[1.0, 0.0, 0.0] A three element vector of normalized floating point values
specifying the red, green, and blue components of the color.

[1.0, 0.0, 0.0, 1.0] A four element vector of normalized floating point values
specifying the red, green, blue, and alpha components of the
color. The alpha component is the transparency where 0.0 is
completely transparent and 1.0 is opaque. Transparency is not
supported for all color specifications and will be ignored
where not available.

2 If a short byte or short integer value is passed, the RGB color
is obtained from the corresponding entry in the current PV-
WAVE color table. In this case when TEK_COLOR has been
called, color index 2 is red.

160 PV-WAVE User’s Guide

vtkCOMMAND

Most low-level VTK functionality is accessed using vtkCOMMAND, which sim-
ply sends a text string containing any valid Tcl or VTK wrapper command to the
spawned Tcl process. You can send individual commands or even invoke pre-writ-
ten Tcl scripts through the “include” Tcl command.

Creation and access to VTK objects via Tcl (and thus vtkCOMMAND from PV-
WAVE) is made using this convention:

To create a VTK object in Tcl:
Vtk_class_name my_vtk_variable name

To call a method of a VTK object in Tcl:
My_vtk_variable_name method_name param_1 param_2 param_n

For example to create a VTK light source and set the color to red you could use
these commands from PV-WAVE:
vtkCOMMAND, ‘vtkLight my_light’

vtkCOMMAND, ‘my_light SetColor 1.0 0.0 0.0’

The use of the Tcl wrappers for VTK commands are documented in the references
mentioned in the Introduction on page 153 and in reference pages available with
the VTK download. If you download the VTK distribution from http://public.kit-
ware.com, there are hundreds of example Tcl scripts for creating different kinds of
VTK visualizations. These scripts can be used in developing PV-WAVE wrappers
to create these same visualizations from PV-WAVE.

VTK Dataset Creation

VTK supports five (5) basic dataset representations. These represent the different
ways in which data can be organized for use in visualizations. This includes repre-
sentations from simple points in 3D space, polygons, grids, and voxels (volume
elements). The following PV-WAVE wrappers offer a way to create, store, and pass
these datasets to VTK:

• vtkPOLYDATA

• vtkRECTILINEARGRID

• vtkSTRUCTUREDGRID

• vtkSTRUCTUREDPOINTS

• vtkUNSTRUCTUREDGRID

With all of the above dataset types, the most fundamental element is a point. In
VTK there are attributes that can be associated with points and used in various
ways for visualizations, such as for coloring points or drawing vectors associated

Hardware Rendering 161

with points. Creating these attributes is accomplished using the PV-WAVE proce-
dure vtkADDATTRIBUTE. Attributes created with this routine can be used in calls
to the above five dataset creation routines. See the references in the Introduction on
page 153 for more details.

Simple Examples

Here are some examples of using the PV-WAVE VTK Integration routines that
show how VTK can be accessed in a manner very similar to existing PV-WAVE
graphic routines.

Example 1: Create a Surface Plot
vtkSURFACE, DIST(10), Shades=’slate_blue’

This one command automatically invokes vtkINIT and vtkWINDOW to open a
window. Since only one color was specified (in this case using a named color), the
entire surface is shaded using that color.

NOTE In VTK, X, Y and Z scaling are always identical, therefore you may need
to scale your raw data in order to change the scaling of one direction. For example
when using vtkSURFACE multiply your Z array by a scale factor so that the height
of the surface is appropriate.

Example 2: Display a Cube With a Different Color at Each Vertex
vertex_list = [[0.0, 0.0, 0.0], $

 [1.0, 0.0, 0.0], $

 [1.0, 1.0, 0.0], $

 [0.0, 1.0, 0.0], $

 [0.0, 0.0, 1.0], $

 [1.0, 0.0, 1.0], $

 [1.0, 1.0, 1.0], $

 [0.0, 1.0, 1.0]];

polygon_list = [4, 0, 1, 2, 3, $

 4, 4, 5, 6, 7, $

 4, 0, 1, 5, 4, $

 4, 2, 3, 7, 6, $

 4, 0, 4, 7, 3, $

 4, 1, 2, 6, 5]

TEK_COLOR

vertex_colors = [2,3,4,5,6,7,8,9]

vtkPOLYSHADE, vertex_list, polygon_list, Color=vertex_colors

162 PV-WAVE User’s Guide

This example shows how we can use a vertex/polygon list to create a plot in much
the same way as with POLYSHADE. Since the colors we specify are short integers,
the colors used are from the current PV-WAVE color table, which was loaded using
TEK_COLOR in this case.

Example 3: Adding an Annotation to a Scene
vtkWINDOW, /Free, Background='000077'XL, /NoRender

vtkSURFACE, HANNING(20,20)*20.0, Shades=[1.0, 0.0, 0.0, 0.5]

vtkTEXT, 'Transparent Surface', Position=[10, 10, 20], $

 /Follow, Color='green'

vtkRENDERWINDOW

NOTE that we use /NoRender to suppress rendering until we have added every-
thing to the scene (the surface and text annotation). Also note that we specify colors
in three different ways:

Example 4: Debugging VTK
vtkINIT, /Print

vtkWINDOW, /NoRender

vtkSCATTER, RANDOMN(seed, 3, 100), Color=’blue’

vtkRENDERWINDOW

HAK, /Mesg

vtkWDELETE

vtkCLOSE

In this example we explicitly call vtkINIT so that we can turn on logging of all Tcl
commands. We also manage the window creation and deletion and rendering
ourselves.

More examples are provided with the PV-WAVE distribution.

For additional examples see the procedures in the directory
<vni>/vtk-3_2/demo (where <vni> is the path to your top level VNI
directory).

‘000077’XL A long integer specifying a dark blue color

[1.0, 0.0, 0.0, 0.5] A four element array specifying the color red with
a 50% transparency

'green' A string specifying a named color, as defined in
vtkcolornames.pro.

Software Rendering 163

Software Rendering
You can render 3D geometric and volumetric data using the advanced rendering
capabilities of PV-WAVE. Most of these functions are part of the standard library.
The RENDER function is a system routine that performs rendering using the ray
tracing technique.

In addition, the standard library contains several utility functions for gridding (2D,
3D, 4D, and spherical) and for conversion of rectangular, polar, cylindrical, and
spherical coordinates.

For additional information on the rendering, gridding, and coordinate conversion
functions discussed in this chapter, see the PV-WAVE Reference.

In PV-WAVE, advanced rendering is performed using a technique called ray trac-
ing. Ray tracing is the process of following the path of light rays from a light source
into a scene. It is one of the most powerful techniques in the image synthesis gal-
lery. The PV-WAVE ray-tracer handles translucency and opacity, and provides the
ability to display both geometric (polygonal) and volume data within one image.

For example, it allows you to display the fluid air flow over, around, or through an
object, such as an airplane wing together with a general description of the wing.

Using PV-WAVE’s renderer, you can also generate pictures of voxel (volume) data
directly, without having to convert to a polygonal iso-surface representation first.

Using the other routines in the Advanced Rendering Library, you can now easily
mix the methods you employ for visualizing your data — for example, geometric
data with volumetric data. (Volumetric data are 3D entities that have information
inside them, instead of using polygons and lines to merely represent geometric sur-
faces and edges.)

These routines also provide:

✔ 3D vector field plots

✔ iso-surfaces for polygonal representation. (An iso-surface is a pseudo-surface
of constant density within a volumetric data set.)

✔ a volume slicer for interactive subsetting and display of volumetric data

✔ a view tool to graphically set the X, Y, Z position

✔ “rubber sheet” mapping of an image onto a sphere

164 PV-WAVE User’s Guide

Demonstration Programs
There are three sources for advanced rendering demonstration programs:

• You can run the demonstration programs and look at the code in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

• You can run the demonstration programs and look at the code in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

• You can run the PV-WAVE Demonstration Gallery and look at Gallery code
examples.

Demonstration Programs in the Examples Directory

You can find most of the Advanced Rendering Library demonstration programs in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

UNIX USERS Before running these programs on a UNIX system, be sure to read
the ARL section of the PV-WAVE Tips and Technical Notes for important
information.

To run these programs:

❑ Change to the examples directory and start PV-WAVE.

❑ At the WAVE> prompt, enter the name of the program you want to run. For
example:

WAVE> vol_demo1

Demonstration Programs 165

❑ If you want to run another program, start a new session (exit and re-enter
PV-WAVE) before typing in another program name. Exiting insures that all
variables are cleared, and that none of the data or displays from the previous
programs interfere with the new demonstration program.

Ray Tracing Demonstration (Render Directory)

For a quick demonstration of ray tracing applications, CD to the following
directory:

(UNIX) <wavedir>/demo/render

(OpenVMS) <wavedir>:[DEMO.RENDER]

(Windows) <wavedir>\demo\render

Where <wavedir> is the main PV-WAVE directory.

Then, enter the following commands:

WAVE> show_anim

; Quadric animation - Shows earth revolving for several revolutions.
; This demo takes approximately five minutes to complete.

WAVE> show_iso_head

; Polygonal mesh with many polygons (iso-surfaces)

WAVE> show_slic_head

; Slicing a volume.

WAVE> show_flat_head

; Rendering an iso-surface with voxel values.

WAVE> show_tran_head

; Diffuse and partially transparent iso-surfaces.

WAVE> show_core_head

; Rendering iso-surfaces with transformation matrices.
; Renders two volumes in the same scene.

The above routines display the resulting rendered images that have already been
created with gen_ routines and then stored in files. To get a feel for how long it
actually takes to create these rendered images on your workstation, enter the fol-
lowing commands. (On typical workstations, they each take from five to ten
minutes to generate, where the time taken is a function of the speed at which your
workstation does floating-point arithmetic.)

WAVE> gen_amin

; Quadric animation.

166 PV-WAVE User’s Guide

WAVE> gen_iso_head

; Polygonal mesh with many polygons.

WAVE> gen_slic_head

; Slicing a volume.

WAVE> gen_flat_head

; Rendering an iso-surface with voxel values.

WAVE> gen_tran_head

; Diffuse and partially transparent iso-surfaces.

WAVE> gen_core_head

; Rendering iso-surfaces with transformation matrices.
; Renders two volumes in the same scene.

SLICE_VOL Function and VIEWER Procedure
Demonstrations

These two routines can be used to manipulate and view portions of volumes.

The SLICE_VOL function returns a two-dimensional array containing a slice from
a 3D volumetric array. You can demonstrate the SLICE_VOL function using the
Medical Imaging and CFD/Aerospace buttons of the PV-WAVE Demonstration
Gallery.

The VIEWER procedure lets you interactively define a 3D view, a slicing plane,
and multiple cut-away volumes. You can demonstrate the VIEWER procedure
using the 4-D Data, Medical Imaging, Oil/Gas Exploration, and CFD/Aerospace but-
tons of the PV-WAVE Demonstration Gallery.

Tables of Demonstration Programs

The following tables summarize the demonstration programs and list the rendering
routines that are used in these programs.

The demonstration programs listed in the tables are located in the render and
arl directories in:

(UNIX) <wavedir>/demo

(OpenVMS) <wavedir>:[DEMO]

(Windows) <wavedir>\demo

Where <wavedir> is the main PV-WAVE directory.

Demonstration Programs 167

Polygon Rendering

Demonstration Programs Routines Used

poly_demo1

Displays a perspective view of a surface from a view-
point within the data.

SET_VIEW3D
POLY_SURF
POLY_NORM
POLY_TRANS
POLY_DEV
POLY_C_CONV
POLY_PLOT

grid_demo4

Shows 4D gridding and a cut-away view of a block of
volume data.

GRID_4D
VOL_PAD
CENTER_VIEW
SHADE_VOLUME
POLYSHADE

f_gridemo4

Shows 4D gridding and a cut-away view of a block of
volume data.

FAST_GRID4
VOL_PAD
CENTER_VIEW
SHADE_VOLUME
POLYSHADE

cube1

Constructs a polygonal mesh of diffusely shaded poly-
gons. This program is not on the tape.

MESH, RENDER

cube2

Constructs a polygonal mesh of flat-shaded poly-
gons.This program is not on the tape.

MESH, RENDER

gen_iso_head

show_iso_head

Creates a human head using a polygonal mesh with
52,500 polygons.

SHADE_VOLUME
MESH, RENDER

sphere_demo1

Displays an image warped onto a sphere.

POLY_SPHERE
CENTER_VIEW
POLYSHADE

168 PV-WAVE User’s Guide

sphere_demo2

Displays data warped onto an irregular sphere.

POLY_SPHERE
CENTER_VIEW
POLYSHADE
POLY_COUNT
POLY_NORM
POLY_TRANS
POLY_DEV
POLY_C_CONV
POLY_PLOT

sphere_demo3

Displays multiple spheres merged together.

GRID_SPHERE
POLY_SPHERE
POLY_COUNT
POLY_TRANS
POLY_MERGE
CENTER_VIEW
POLYSHADE
POLY_NORM
POLY_DEV
POLY_PLOT

grid_demo5

Shows spherical gridding.

GRID_SPHERE
POLY_SPHERE
CENTER_VIEW
POLYSHADE

gen_anim
show_anim

Constructs a “movie” of an orbit around a sphere. This
program takes several minutes to run.

SPHERE
RENDER

Volume Rendering

Demonstration Programs Routines Used

vec_demo1

Displays a 3D vector field from X-Y-Z data.

VECTOR_FIELD3

vec_demo2

Displays a 3D vector field from the volumetric data with
specified starting points for the vectors.

CONV_TO_RECT
VECTOR_FIELD3

Polygon Rendering (Continued)

Demonstration Programs Routines Used

Demonstration Programs 169

vol_demo1

Displays a 3D fluid flow vector field with random start-
ing points for the vectors.

CONV_TO_RECT
VECTOR_FIELD3

gen_slic_head

show_slic_head

Demonstrates the rendering of selected slices through
some volume data.

VOLUME
RENDER

gen_flat_head

show_flat_head

Renders a diffuse iso-surface with voxel values.

VOLUME
RENDER

gen_tran_head

show_tran_head

Renders both a diffuse iso-surface together with a par-
tially transparent iso-surface.

VOLUME
RENDER

gen_core_head

show_core_head

Renders a diffuse iso-surface using actual voxel values
Demonstrates the rendering of two volumes into a single
image.

VOLUME
RENDER

Polygon and Volume Rendering

Demonstration Programs Routines Used

vol_demo2

Displays an MRI scan of a human head using three
different display techniques. This demonstration takes a
while to run.

VOL_PAD
CENTER_VIEW
VOL_MARKER
SHADE_VOLUME
POLYSHADE
VOL_TRANS
VOL_REND

Volume Rendering (Continued)

Demonstration Programs Routines Used

170 PV-WAVE User’s Guide

vol_demo3

Displays 3D fluid data using two display techniques.

CENTER_VIEW
SHADE_VOLUME
POLYSHADE
VOL_PAD
VOL_TRANS
VOL_REND

vol_demo4

Similar to grid_demo3, but also renders the data using
POLY_PLOT and VOL_REND.

GRID_4D
VOL_PAD
CENTER_VIEW
SHADE_VOLUME
POLYSHADE
POLY_NORM
POLY_TRANS
POLY_DEV
POLY_COUNT
POLY_PLOT
VOL_TRANS
VOL_REND

Gridding

Demonstration Program Routines Used

f_gridemo2

Shows 2D gridding with dense data input.

FAST_GRID2

f_gridemo3

Shows 3D gridding with dense data input.

FAST_GRID3

f_gridemo4

Shows 4D gridding with dense data input.

FAST_GRID4

grid_demo2

Shows 2D gridding with sparse data input.

GRID_2D

grid_demo3

Shows 3D gridding with sparse data input.

GRID_3D

grid_demo4

Shows 4D gridding with sparse data input.

GRID_4D

Polygon and Volume Rendering (Continued)

Demonstration Programs Routines Used

The Basic Rendering Process 171

NOTE The Advanced Rendering Library also contains the demonstration pro-
gram, img_demo1. This program displays a pseudo true-color Landsat image on
an 8-bit color system. On some systems, you may need to click in the Wave 0 win-
dow to see the proper colors.

The Basic Rendering Process
The five basic steps to rendering are:

❑ Import or generate data to be rendered. See the section Importing and Gener-
ating Data for Rendering on page 172 for details.

❑ Manipulate and convert data. This step is optional, depending on the type of
data you are using. PV-WAVE provides several functions and procedures for
transforming data to be rendered. See the section, Manipulating and Convert-
ing Data on page 176 for details.

❑ Set up your data for viewing. See the section Setting Up Data for Viewing on
page 179 for details.

❑ Use one of the rendering routines to render the image. The rendering routines
are:

POLY_PLOT

POLYSHADE

VECTOR_FIELD3

VOL_MARKER

VOL_REND

RENDER

See the sections Rendering with Standard Techniques on page 179 and
Ray-tracing on page 180.

❑ Display data. See the section Displaying Rendered Images on page 200.

grid_demo5

Shows spherical gridding.

GRID_SPHERE

Gridding (Continued)

Demonstration Program Routines Used

172 PV-WAVE User’s Guide

Importing and Generating Data for Rendering
Before you can render data, you must import and/or generate data. There are
several ways to render imported or generated data. The demonstration programs
illustrate five ways:

• Import the data, manipulate the data, set up the data for viewing, and then
render the imported data. Demonstration programs that illustrate this method
are:

vec_demo2

vol_demo1

• Import the data, generate polygons or volumes, manipulate the data, set up the
data for viewing, and then render the data. Examples are:

poly_demo1

vol_demo2

vol_demo3

• Import the data, generate polygons or volumes, set up the data for viewing, and
then render the data. Examples are:

sphere_demo1

gen_iso_head

gen_amin

gen_slic_head

gen_flat_head

gen_tran_head

gen_core_head

The gen_ routines import data, generate polygons or volumes, use the
RENDER function to render images and then store the rendered images in a
file.

• Generate polygons, manipulate the data, set up the data for viewing, and then
render the data. Examples are:

sphere_demo2

sphere_demo3

f_gridemo4

Importing and Generating Data for Rendering 173

grid_demo4

• Generate polygons, set up the data for viewing, and then render the data.
Examples are:

grid_demo5

vec_demo1

cube1

cube2

Importing Data

You can render data that is imported from one or more files. Refer to for details on
importing data into PV-WAVE. Example programs that import data from more
than one file are poly_demo1, vec_demo2, and vol_demo1.

Generating Polygons and Volumes

PV-WAVE provides routines for creating various types of polygons and volumes
such as meshes, rectangular surfaces, spherical surfaces, cones, and cylinders.

Some of these routines are only used with the RENDER function (CONE,
CYLINDER, MESH, SPHERE and VOLUME). For information on these
RENDER-specific functions, see the section Specifying RENDER Objects on page
181, as well as the individual function descriptions in PV-WAVE Reference.

Many of the render routines and their utilities require a vertex_list and a
polygon_list as input parameters. Routines that generate a vertex_list and a
polygon_list representation for polygons and volumes are described in this section.
These routines include POLY_SPHERE, POLY_SURF, and SHADE_VOLUME.

Vertex Lists and Polygon Lists

PV-WAVE uses a very simple format for polygonal representation. It consists of
an array of vertices and a flat one-dimensional array of polygons, as described
below.

• vertex_list — A (3, n) array containing the three-dimensional coordinates of
each vertex.

• polygon_list — An array containing the number of sides for each polygon and
the subscripts into the vertex_list array.

Here’s an example of how to render two adjacent square polygons with a
vertex_list:

174 PV-WAVE User’s Guide

As shown in Figure 7-1, there are only six vertices in the resulting vertex_list
because two vertices are shared by both polygons.

Figure 7-1 Vertices of two square polygons. Six vertices define both polygons.

The polygon_list then contains:

4 The first polygon has 4 sides.

0 The first vertex is vertex_list(*, 0).

1 The second vertex is vertex_list(*, 1).

4 The third vertex is vertex_list(*, 4).

5 The fourth vertex is vertex_list(*, 5).

4 The second polygon has 4 sides.

1 The first vertex is vertex_list(*, 1).

2 The second vertex is vertex_list(*, 2).

3 The third vertex is vertex_list(*, 3).

X-axis Y-axis Z-axis

0.0 0.0 0.0

1.0 0.0 0.0

2.0 0.0 0.0

2.0 1.0 0.0

1.0 1.0 0.0

0.0 1.0 0.0

0.0, 0.0, 0.0 1.0, 0.0, 0.0 2.0, 0.0, 0.0

2.0, 1.0, 0.01.0, 1.0, 0.00.0, 1.0, 0.0

Importing and Generating Data for Rendering 175

4 The fourth vertex is vertex_list(*, 4).

The rendering procedures POLYSHADE and POLY_PLOT both use a vertex_list
and polygon_list as input parameters. Other routines that use either a vertex_list or
a polygon_list include:

• POLY_C_CONV

• POLY_COUNT

• POLY_DEV

• POLY_NORM

• POLY_MERGE

• POLY_TRANS

The RENDER function also requires a vertex_list and a polygon_list if it is used to
render polygonal meshes with the MESH function. Polygonal meshes representing
objects that have been derived outside of PV-WAVE can be imported, converted to
the representation used by MESH, and then rendered with the RENDER function.

Examples of the RENDER function that use vertex_list and polygon_list to create
polygonal meshes include Example 1: Polygonal Mesh (Diffusely-shaded Poly-
gons) on page 187, Example 2: Polygonal Mesh (Flat-shaded Polygons) on page
187, and Example 3: Polygonal Mesh (Many Polygons) on page 188.

Rectangular Surfaces

You can generate a vertex_list and a polygon_list for rectangular surfaces with the
POLY_SURF procedure. This procedure generates a three-dimensional vertex_list
and a polygon_list from a two-dimensional array that contains Z values. The exam-
ple program poly_demo1 uses this procedure.

Spherical Surfaces

You can use the POLY_SPHERE procedure to generate a vertex_list and a
polygon_list for a sphere. Demonstration programs that use this procedure are:

• grid_demo5

• sphere_demo1

• sphere_demo2

• sphere_demo3

176 PV-WAVE User’s Guide

Three-Dimensional Volumes

The SHADE_VOLUME procedure generates a vertex_list and polygon_list
describing the contour iso-surface of a given three-dimensional volume. Example
programs that use SHADE_VOLUME include:

• f_gridemo4

• grid_demo4

• vol_demo2

• vol_demo3

• vol_demo4

• gen_iso_head

For a complete description of the SHADE_VOLUME procedure and the other pro-
cedures mentioned in this section, see the PV-WAVE Reference.

Manipulating and Converting Data
PV-WAVE provides routines for manipulating and converting data, as summarized
in this section. This step is optional depending on the type of data you are using.
For details about each routine, see its description in PV-WAVE Reference.

2-, 3-, and 4-dimensional Gridding

Gridding is a method that generates a uniform grid from irregularly spaced data;
the method interpolates or extrapolates new data from a given set of data, and then
creates a uniform grid that maps this data. PV-WAVE supports 2D, 3D, and 4D
gridding.

2D Gridding

The functions FAST_GRID2 and GRID_2D return a gridded one-dimensional
array containing Y values for input data with X, Y coordinates. The FAST_GRID2
function works best with dense data points (more than a thousand points to be grid-
ded). The GRID_2D function works best with sparse data points (less than a
thousand points to be gridded).

3D Gridding

The functions FAST_GRID3 and GRID_3D return a gridded two-dimensional
array containing Z values for input data with X, Y, and Z coordinates. The

Manipulating and Converting Data 177

FAST_GRID3 function works best with dense data points. The GRID_3D function
works best with sparse data points.

4D Gridding

The functions FAST_GRID4 and GRID_4D return a gridded three-dimensional
array containing intensity values for input data with four-dimensional coordinates.
The FAST_GRID4 function works best with dense data points. The GRID_4D
function works best with sparse data points.

Spherical Gridding

The GRID_SPHERE function returns a gridded, two-dimensional array containing
radii, given random longitude, latitude, and radius values.

Polygon Manipulation

The polygon manipulation routines generate information to be used by the polygon
rendering routines. These routines are discussed in detail in the PV-WAVE
Reference.

• POLY_C_CONV This function returns a list of colors for each polygon.
The function requires a polygon_list and a list of colors for each vertex. The
POLY_PLOT procedure uses data generated by this function.

• POLY_COUNT This function returns the total number of polygons con-
tained in a polygon_list. The total number of polygons is required as an input
by the POLY_PLOT procedure.

• POLY_MERGE This procedure merges two vertex lists and two polygon
lists.

• POLY_TRANS This function returns a list of 3D points transformed by a
4-by-4 transformation matrix.

Volume Manipulation

The two volume manipulation routines, VOL_PAD and VOL_TRANS prepare vol-
umes for rendering.

• VOL_PAD This function returns a three-dimensional volume of data pad-
ded on all six sides with zeroes. For example, if you are transforming a small
volume inside a large volume using the VOL_TRANS function, then you
should use the VOL_PAD function to pad the small volume with zeros. If you
do not pad the small volume with zeros, the data points at the edge of the small
volume will be duplicated to fill the space between the outer surfaces of the

178 PV-WAVE User’s Guide

small volume and the inner surfaces of the large volume. See Figure 7-2. This
function is often used to process volumes before using the VOL_TRANS and
SLICE_VOL function.

Figure 7-2 The VOL_PAD function pads the space between two volumes with zeros. With-
out VOL_PAD, data values from the outer edges of the small volume fill the empty space
between the two volumes.

• VOL_TRANS This function returns a three-dimensional volume of data
transformed by a 4-by-4 matrix.

• SLICE_VOL This function returns a two-dimensional array containing a
slice from a three-dimensional volumetric array.

Coordinate Conversion

PV-WAVE provides several routines for converting data to various coordinate
systems. Some of the rendering functions require that data be mapped to a
particular coordinate system. The POLY_PLOT procedure requires a vertex_list
with device coordinates. The POLYSHADE procedure must be in either data or
normalized coordinates.

• CONV_TO_RECT — This function converts polar, cylindrical, or spherical
coordinates to rectangular coordinates.

• CONV_FROM_RECT — This function converts rectangular coordinates to
polar, cylindrical, or spherical coordinates.

• POLY_NORM — This function returns a list of three-dimensional points
converted from data coordinates to normal coordinates. This function is often
used in conjunction with the POLY_TRANS and POLY_DEV functions to
transform a vertex_list that is used by some of the render functions.

• POLY_TRANS — This function returns a list of three-dimensional points
transformed by a 4-by-4 transformation matrix. Like the POLY_NORM
function, this function is used to transform a vertex_list.

Setting Up Data for Viewing 179

• POLY_DEV This function returns a list of three-dimensional points
converted from normal coordinates to device coordinates. This function is
often used in conjunction with the POLY_TRANS and POLY_NORM
functions to transform a vertex_list.

Setting Up Data for Viewing
In some instances, you may need to set up your data for viewing before rendering.
Several routines that set up viewing are:

• CENTER_VIEW This procedure sets system viewing parameters to
display data in the center of the current window.

• SET_VIEW3D This procedure generates a three-dimensional view
given a view position and a view direction.

• VIEWER This procedure lets you interactively define a three-dimensional
view, a slicing plane, and multiple cut-away volumes.

• T3D This is a Standard PV-WAVE library procedure. Refer to This
procedure is used by sphere_demo3, vec_demo1, vec_demo2, and
vol_demo1. These demonstration programs are located in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

This procedure is also used by all of the gen_ demonstration programs in:

(UNIX) <wavedir>/demo/render

(OpenVMS) <wavedir>:[DEMO.RENDER]

(Windows) <wavedir>\demo\render

Where <wavedir> is the main PV-WAVE directory.

Rendering with Standard Techniques
Once you have imported, generated, and set up your data for viewing, you are ready
to render it. PV-WAVE provides routines to render both polygons and volumes.
This section briefly describes these rendering routines, which are part of the stan-
dard library. For additional information on these routines, see the PV-WAVE
Reference.

180 PV-WAVE User’s Guide

Polygon Rendering

The two polygon rendering routines are POLY_PLOT and POLYSHADE:

• POLY_PLOT This procedure requires a vertex_list, a polygon_list, and the
total number of polygons to plot. The procedure does not render polygons with
light-source shading, but it can plot opaque and transparent polygons.

• POLYSHADE This function constructs a shaded surface representation of
one or more solids described by a set of polygons. This function also requires
a vertex_list and a polygon_list.

Volume Rendering

A volume of data consists of intensity values represented at data points located by
three-dimensional coordinates. There are three routines for rendering volumes.

• VECTOR_FIELD3 This procedure plots a three-dimensional vector field
from three 3D arrays.

• VOL_MARKER This procedure displays colored markers scattered
throughout a volume.

• VOL_REND This function renders volumetric data translucently.

Ray-tracing
The RENDER function lets you generate multiple images for a scene from five
object types using a ray-tracing technique. For example, you can generate pictures
of voxel data directly, without having to convert to a polygonal iso-surface repre-
sentation. (Voxels are the 3D counterpart of a 2D pixel).

You can also simultaneously render volumes, polygonal meshes, and three kinds of
quadric objects: cones, cylinders, and spheres.

• Volumes are applicable to any voxel processing domain, such as the visualiza-
tion of astronomical, geological, and medical data.

• Polygonal meshes can be used for iso-surfaces, as well as spatial-structural
data.

• Cones can be used for caps on axes.

• Cylinders can be used for molecular modeling (symbolizing bonds) as well as
axes and 3D line generation.

Ray-tracing 181

• Spheres are applicable to spherical inverse (“rubber sheet”) mapping as well as
molecular modeling (atoms).

This section describes the lighting and color models used by the Renderer. It also
explains how you specify objects to be rendered, including setting material prop-
erties and view transformations.

Specifying RENDER Objects

The five object types (primitives) supported by RENDER correspond to five func-
tions that define these objects. They are summarized below and detailed in the PV-
WAVE Reference.

• CONE — A conic primitive that is defined by default to be centered at the ori-
gin with a height of 1.0, and to have an upper radius of 0.5 and a lower radius
of 0. The lower radius can be changed using the Radius keyword, while the
upper radius can be changed using the Scale keyword with the T3D procedure.

The Radius keyword corresponds to a scaling factor in the range [0...1] which
is multiplied by the upper radius to give the lower radius. For example,
Radius=0.5 corresponds to a conic object whose lower radius is one-half of the
upper radius, while Radius=0.0 corresponds to a point whose lower radius is 0
(a conic that ends in a point).

• CYLINDER — This is the similar to a CONE, except that the lower radius is
the same as the upper radius (a CONE with Radius=1.0).

• MESH — A polygonal mesh primitive that uses a standard list of vertices and
polygons that are described in Vertex Lists and Polygon Lists on page 173.

Note that any non-coplanar polygons in a mesh will automatically be reduced
to triangles by RENDER.

• SPHERE — An ellipsoid primitive centered at the origin with a radius of 0.5.

• VOLUME — Volume data that uses a three-dimensional byte array. Each byte
in the voxel array corresponds to an index into the material properties associ-
ated with the volume.

Lighting Model

The RENDER function uses a more complicated lighting model than that used by
the other routines. Under this new paradigm, the intensity value at a pixel is gener-
ated using a recursive shading function that is designed to imitate natural light.

182 PV-WAVE User’s Guide

Light rays are emitted from lights, bounce, and are then absorbed and possibly re-
emitted with respect to objects in the scene; sometimes they reach (are visible to)
the viewer (in this case, an image). This technique of rendering is called “ray
tracing.”

The components that comprise the color at a particular point on an object in a scene
are a function of the material properties of the object at that point and the orienta-
tion of the object with respect to other objects, light sources, and the viewer.

The Renderer supports Lambertian diffusion, transparency, and ambient material
properties for color, as detailed below.

Defining Color and Shading

The color at point P on an object is defined simply a

Color (D + T + A)

where D represents the diffuse component, T represents the transmission compo-
nent, and A represents the ambient component. These three shading components
are defined below.

(PV-WAVE allows only a scalar value in the specification of color via the Color
keyword. Thus, the term “intensity” is technically more accurate. However, the
term “color” was chosen to allow for future enhancements.)

Diffuse Component

The diffuse component corresponds to a simple approximation of Lambertian
shading where the resulting intensity at some point on an object is a function of the
light incident at that point, the position of the associated light source(s), and the
surface normal at that point.

The diffuse component is defined as

:

where

Kdiff is the diffuse reflectance coefficient.

ILi is the intensity of light source i.

NP is the unit surface normal at point P.

Kdiff ILi NP LPi•()
i 0=

nvl

∑=

Ray-tracing 183

LPi is the unit vector from point P to the location of the point light source
Li.

. is the vector dot product.

By default, nvl is the total number of lights. If the Shadows keyword is specified in
the call to RENDER, then nvl is the number of visible light sources (possibly via
transmission through objects) at point P.

Transmission Component

The transmission component is simply the light which has passed through the
object at a particular point. For example, the color of a point on a glass ball is a
combination of both the light striking the surface and the light which passes
through it from the opposite side of the point. RENDER currently assumes that the
refractive indices of all objects are the same.

The transmission component is defined as:

where

Ktran is the specular transmission coefficient.

Ti is the intensity of the light that is transmitted from other objects, assum-
ing that all objects have a refractive index of 1 (air).

NP is the unit surface normal at point P.

TN is the calculated specular transmission microfacet normal from the
direction of transmission.

. is the vector dot product.

Ambient Component

The ambient component of the resulting shaded color is completely independent of
the position of objects and light sources. It is typically used alone (i.e., Kdiff and
Ktran are 0) for flat shading and for rendering voxel values as intensities that cor-
respond directly to their actual byte values.

The ambient component is defined as:

T Ktran T i⋅() NP T N•()=

184 PV-WAVE User’s Guide

where

Kamb is the ambient coefficient.
nl is the total number of light sources.
ILi is the intensity of light source i.

Defining Object Material Properties

The following keywords can be used with each RENDER object:

• Color — The color (intensity) coefficient of the object.

• Kamb — The ambient coefficient (flat shaded).

• Kdiff — The diffuse reflectance coefficient.

• Ktran — The specular transmission coefficient.

Objects may have up to 256 material properties each; thus, an array of 256 double-
precision floating-point values can be assigned to each keyword.

The defaults for these properties vary from object to object:

• For CONE, CYLINDER, SPHERE, and MESH, Color and Kdiff are all 1,
while Kamb and Ktran are all 0. (This corresponds to Color(0:255)=1.0
and Ktran(0:255)=0.0 in PV-WAVE notation.)

• For VOLUME, Color are all 1, Kdiff and Ktran are all 0, and Kamb is an array
of 256 linearly increasing values from 0 to 1.

CONE, CYLINDER, and SPHERE also support a Decal keyword that allows map-
ping of a byte image onto the surface of the object. The values in the image
correspond to an index into the arrays of material properties defined above; thus,
different regions on an object can have different properties.

For polygonal meshes, in addition to specifying a list of polygons, you can also
specify a 1D array of bytes, one element for each polygon. This array is an index
into the arrays of material properties defined above. This allows you to then use the
Materials keyword to specify different properties for different polygons.

The actual value in the voxel array of bytes defining a VOLUME is used as an index
into the arrays of material properties defined with the Materials keyword; thus, a
voxel data set can be considered to be made up of as many as 256 voxel types.

A Kamb ILi

i 0=

nl

∑=

Ray-tracing 185

TIP For best results, be sure that each Color(Kamb+Kdiff+Ktran) setting is in the
range [0...1]. Otherwise, you must use the Scale keyword in the call to RENDER.

Decals

A decal is a 2D array (image) of bytes whose elements correspond to indices into
the arrays of material properties. You can use the Decal keyword with the quadric
objects.

For example, if a given point on an object is mapped to coordinates (u,v) in the
decal image, then the material properties used at that point for shading would be
Color(Decal(u,v)), Kamb(Decal(u,v)), Kdiff(Decal(u,v))
andKtran(Decal(u,v)). An example of applying a decal to a sphere is shown
in Example 4: Quadric Animation on page 190.

Setting Object and View Transformations

The view that is automatically generated by RENDER is depicted in Figure 7-3.
(You can retrieve this view with the Info keyword; for details, see the PV-WAVE
Reference.)

Figure 7-3 The default view used in RENDER positions the observer’s eye on the positive
z-axis, looking towards the origin into the scene with a slight perspective. All objects are vis-
ible in this default view.

scene

bottom left bottom right

view plane
(rendered image)

top left

eye

light
The default is
the same point.

186 PV-WAVE User’s Guide

You can use the View keyword with RENDER to specify a different view. This is
especially useful for zooming in or for animations, since changes in scale can result
if you use the default view in animations.

You can also use the Transform keyword with any object passed into RENDER.
This keyword allows individual objects to be transformed (e.g., rotated, scaled, and
positioned) separately from other objects in the scene. Transform contains the local
transformation matrix whose default is the identity matrix:

Typically, you would build the transformation matrix by first using the T3D proce-
dure and then using the system variable transformation matrix !P.T. Examples of
using this method of matrix construction are shown throughout the RENDER
Examples on page 187.

For more information, see the section Geometric Transformations on page 146.

Invoking RENDER

RENDER is the function that generates the image from the objects you have spec-
ified. The general format is:

result = RENDER(object1, ..., objectn)

where objecti is any number of objects previously-defined with the RENDER
object functions.

RENDER returns a byte image of size X-by-Y, where X and Y each default to 256
unless overridden by the keywords X and Y. The returned image can then be dis-
played using either the TV or TVSCL procedure.

As illustrated in Figure 7-3 on page 185, RENDER automatically generates a
default view. However, you may choose to use the View or Transform keywords to
alter this default view.

Unless otherwise specified, a single-point light source is defined to coincide with
the observer’s viewpoint. The Lights keyword can be used to pass in an array of
locations and intensities of point light sources.

For details on using the other RENDER keywords — Sample, Scale, Shadow, X, Y,
and Info — see the description of this function in the PV-WAVE Reference.

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Ray-tracing 187

RENDER Examples

The following examples were designed to show the capabilities of RENDER,
rather than to depict typical applications. You can find most of the examples in this
section in:

(UNIX) <wavedir>/demo/render

(OpenVMS) <wavedir>:[DEMO.RENDER]

(Windows) <wavedir>\demo\render

The data and image files used are in:

(UNIX) <wavedir>/data

(OpenVMS) <wavedir>:[DATA]

(Windows) <wavedir>\data

Where <wavedir> is the main PV-WAVE directory.

Example 1: Polygonal Mesh (Diffusely-shaded Polygons)

This example constructs a polygonal mesh (iso-surface) of diffusely-shaded poly-
gons. The default light source is at the eye-point.

Program Listing

PRO cube1

verts = [[-1.0,-1.0,1.0], [-1.0,1.0,1.0], $
[1.0,1.0,1.0],[1.0,-1.0,1.0], [-1.0,-1.0,-1.0], $
[-1.0,1.0,-1.0],$ [1.0,1.0,-1.0], [1.0,-1.0,-1.0]]

polys=[4,0,1,2,3, 4,4,5,1,0, 4,2,1,5,6, 4,2,6,7,3, $
4,0,3,7,4, 4,7,6,5,4]

m = MESH(verts, polys)

T3D, /Reset, Rotate = [15.0, 30.0, 45.0]

i = RENDER(m, x = 512, y = 512, Transform = !P.T)

TV, i

END

Example 2: Polygonal Mesh (Flat-shaded Polygons)

This example constructs a polygonal mesh of flat-shaded polygons. Each polygon
face has a different intensity, independent of the light source or the eye-point
(which are the same here.)

Program Listing

PRO cube2

188 PV-WAVE User’s Guide

verts = [[-1.0,-1.0,1.0], [-1.0,1.0,1.0], [1.0,1.0,1.0],$
[1.0,-1.0,1.0], [-1.0,-1.0,-1.0], [-1.0,1.0,-1.0],$
[1.0,1.0,-1.0], [1.0,-1.0,-1.0]]

polys = [4,0,1,2,3, 4,4,5,1,0, 4,2,1,5,6, 4,2,6,7,3, $
4,0,3,7,4, 4,7,6,5,4]

amb = FLTARR(256)

amb(0:5) = [.5, .3, .7, .9, .4, .1]

m = MESH(verts, polys, Materials = [0,1,2,3,4,5], $
Kdiff = FLTARR(256), Kamb = amb)

T3D, /Reset, Rotate = [15.0,30.0,45.0]

i = RENDER(m, x = 512, y = 512, Transform = !P.T)

TV, i

END

Example 3: Polygonal Mesh (Many Polygons)

This example is a realistic application of polygonal meshes. It generates 52,500
polygons (approximately 98,000 triangles) as an iso-surface using the
SHADE_VOLUME procedure. The polygons are then rendered.

The resulting image, shown in Figure 7-4, is saved to a file and is displayed using
show_iso_head.pro.

Note, however, that it is not necessary to convert to a polygonal representation prior
to rendering volumes; this is shown in Examples 5 through 8.

Ray-tracing 189

Figure 7-4 An example of polygonal meshes showing 52,000 polygons generated as an iso-
surface and ray traced using the RENDER function.

Program Listing

PRO gen_iso_head

volx = 115 & voly = 75 & volz = 105

; Volume data dimensions
band = 5

; The neighborhood size of the average filter.

dat = BYTARR(volx, voly, volz)

OPENR, 1, !Data_Dir + ’man_head.dat’

READU, 1, dat

CLOSE, 1

head = BYTARR(volx + 2 * band, voly + 2 * band, volz + 2 * band)

head(band:band + volx - 1, band:band + voly - 1, $
band:band + volz - 1) = dat

head = SMOOTH(head, band)

; Apply band ^ 3 average filter.

SHADE_VOLUME, head, 18, vertex_list, polygon_list, /Low

m = MESH(vertex_list, polygon_list)

; Generate iso-surface.

T3D, /Reset, Rotate = [60.0,0.0,-60.0]

im = RENDER(m, x = 512, y = 512, Transform = !P.T)

TVSCL, im

OPENW, 1, ’iso_head.img’

WRITEU, 1, im

CLOSE, 1

END

Program Listing

PRO show_iso_head

im = BYTARR(512, 512)

OPENR, 1, !Data_Dir + ’iso_head.img’

READU, 1, im

CLOSE, 1

TVSCL, im

190 PV-WAVE User’s Guide

END

Example 4: Quadric Animation

This example “constructs” a movie of an orbit around a sphere which has ocean
temperature mapped on as a decal and a color lookup table applied from
PV-WAVE after generation of the movie.

If you wanted to add the boundaries of countries, you could do so by drawing them
directly into the decal prior to calling SPHERE.

Note that the movie is saved to a file and is displayed using show_anim.pro.

Program Listing

PRO gen_anim

decal = BYTARR(720, 360)

OPENR, 1, !Data_Dir + ’world_map.dat’

READU, 1, decal

CLOSE, 1

; Load the decal to apply.

dif = FLTARR(256)

amb = FINDGEN(256)/255.

; Set shading to correspond directly to image values.
T3D, /Reset, Rotate = [-90.0, 90.0, 0.0]

c = SPHERE(Decal = decal, Kamb = amb, Kdiff = dif, $
Transform = !P.T)

mve = BYTARR(256, 256, 72)

FOR i = 0, 71 DO BEGIN

T3D, /Reset, Rotate = [-20.0, i*5.0, 0.0]

mve(*, *, i) = RENDER(c, x = 256, y = 256, Transform = !P.T)

; Create an animation by orbiting view around the sphere.
ENDFOR

OPENW, 1, !Data_Dir + ’world_anim.img’

WRITEU, 1, mve

CLOSE, 1

END

Program Listing

FUNC show_anim

Ray-tracing 191

Window, 0, XSize = 256, YSize = 256, Colors = 128,$
XPos = 300,YPos = 50

red = FLTARR(256)

grn = FLTARR(256)

blu1 = FLTARR(256)

blu2 = FLTARR(256)

FOR i=0, 100 DO BEGIN

fi = FLOAT(i)

red(i) = (-((ABS(fi - 100.0)^2.00)))

grn(i) = (-((ABS(fi - 50.0)^1.50)))

blu1(i) = (-((ABS(fi - 25.0)^1.00)))

blu2(i) = (-((ABS(fi - 100.0)^0.50)))

; Create a color lookup table.
ENDFOR

red = BYTSCL(red)

grn = BYTSCL(grn)

blu = BYTSCL(blu1) > BYTSCL(blu2)

TVLCT, red, grn, blu, 0

white = 127 & TVLCT, 255, 255, 255, white

light_yellow = 126 & TVLCT, 255, 255, 127, light_yellow

light_purple = 125 & TVLCT, 255, 127, 255, light_purple

light_cyan = 124 & TVLCT, 127, 255, 255, light_cyan

yellow = 123 & TVLCT, 255, 255, 000, yellow

purple = 122 & TVLCT, 255, 000, 255, purple

cyan = 121 & TVLCT, 000, 255, 255, cyan

light_red = 120 & TVLCT, 255, 127, 127, light_red

light_green = 119 & TVLCT, 127, 255, 127, light_green

light_blue = 118 & TVLCT, 127, 127, 255, light_blue

greenish_red = 117 & TVLCT, 255, 127, 000, greenish_red

redish_green = 116 & TVLCT, 127, 255, 000, redish_green

redish_blue = 115 & TVLCT, 127, 000, 255, redish_blue

bluish_red = 114 & TVLCT, 255, 000, 127, bluish_red

bluish_green = 113 & TVLCT, 000, 255, 127, bluish_green

greenish_blue = 112 & TVLCT, 000, 127, 255, greenish_blue

red = 111 & TVLCT, 255, 000, 000, red

green = 110 & TVLCT, 000, 255, 000, green

blue = 109 & TVLCT, 000, 000, 255, blue

gray = 108 & TVLCT, 127, 127, 127, gray

dark_yellow = 107 & TVLCT, 127, 127, 000, dark_yellow

dark_purple = 106 & TVLCT, 127, 000, 127, dark_purple

192 PV-WAVE User’s Guide

dark_cyan = 105 & TVLCT, 000, 127, 127, dark_cyan

dark_red = 104 & TVLCT, 127, 000, 000, dark_red

dark_green = 103 & TVLCT, 000, 127, 000, dark_green

dark_blue = 102 & TVLCT, 000, 000, 127, dark_blue

black1 = 101 & TVLCT, 000, 000, 000, black1

black = 000 & TVLCT, 000, 000, 000, black

EMPTY

frames = BYTARR(256, 256, 72)

OPENR, 1, !Data_Dir + ’world_anim.img’

READU, 1, frames

CLOSE, 1

; Load the previously generated animation.

MOVIE, frames, Order=0

RETURN, frames

; Display the animation.

END

Example 5: Slicing a Volume

This example renders selected slices from a large amount of volume data. The
resulting image, shown in Figure 7-5, is saved to a file and displayed using
show_slic_head.

Ray-tracing 193

Figure 7-5 After slices have been rendered from a large quantity of volume data for this
example, the resulting pixel intensity values show the actual density values of the voxel data.

Program Listing

PRO gen_slic_head

width = 125 & height = 85 & depth = 115

load_seg_head, head, skull

; Use the procedure load_seg_head.pro to load the byte
; voxel data, set all data outside the head to zero,
; return the “segmented head” as HEAD, and return the
; thresholded surface of the head as SKULL.
vox = BYTARR(width, height, depth)

FOR i=0,depth-2,20 DO BEGIN

vox(*,*,i) = head(*,*,i)

vox(*,*,i+1) = head(*,*,i+1)

; Generate the slices of segmented data we wish to view.
ENDFOR

v = VOLUME(vox)

T3D, /Reset, Rotate = [60.0,0.0,-45.0]

im = RENDER(v, x = 512, y = 512, Transform = !P.T, /Scale)

TVSCL, im

OPENW, 1, !Data_Dir + ’sliced_head.img’

WRITEU, 1, im

CLOSE, 1

END

Program Listing

PRO show_slic_head

im = BYTARR(512, 512)

OPENR, 1, !Data_Dir + ’sliced_head.img’

READU, 1, im

CLOSE, 1

TVSCL, im

END

Example 6: Rendering an Iso-Surface with Voxel Values

This example renders a diffuse iso-surface using actual voxel values. The results,
shown in Figure 7-6, are saved to a file and displayed using show_flat_head.

194 PV-WAVE User’s Guide

Figure 7-6 This example renders a diffuse iso-surface using actual voxel values. The sur-
face of the head is shaded using diffusion, and the intensity values on top correspond
directly to the voxel density values.

Program Listing

PRO gen_flat_head

width = 125 & height = 85 & depth = 115

load_seg_head, head, skull

; Use the procedure load_seg_head.pro to load the byte
; voxel data, set all data outside the head to zero,
; return the ’segmented head’ as HEAD, and return the
; thresholded surface of the head as SKULL.
overlap = skull * head

overlap(where(overlap GT 0)) = 1

head = head * (BYTE(1) - overlap)

; Remove portion of head that overlaps with skull.
vox = BYTARR(width, height, depth)

FOR i=0,76 DO vox(*,*,i) = $
head(*, *, i) + (skull(*, *, i)*BYTE(255))

; Generate the slices of smoothed data we wish to view.
diff = FLTARR(256) & diff(255) = 0.6

amb = FINDGEN(256)/255.0 & amb(255) = 0.0

; Voxel value 255 is special, representing the skull surface.

v = VOLUME(vox, Kdiff = diff, Kamb = amb)

Ray-tracing 195

T3D, /Reset, Rotate = [60.0, 0.0, -45.0]

im = RENDER(v, x = 512, y = 512, Transform = !P.T, /Scale)

TVSCL, im

OPENW, 1, !Data_Dir + ’flat_head.img’

WRITEU, 1, im

CLOSE, 1

END

Program Listing

PRO show_flat_head

im = BYTARR(512,512)

OPENR, 1, !Data_Dir + ’flat_head.img’

READU, 1, im

CLOSE, 1

TVSCL, im

END

Example 7: Diffuse and Partially Transparent Iso-Surfaces

This example renders a diffuse iso-surface and a partially transparent iso-surface.
The results, shown in Figure 7-7, are saved to a file and displayed using
show_tran_head.

196 PV-WAVE User’s Guide

Figure 7-7 The voxel values within the iso-surfaces are completely transparent in this
example, which renders a diffuse iso-surface and a partially transparent iso-surface.

Program Listing

PRO gen_tran_head

width = 125 & height = 85 & depth = 115

load_seg_head, head, skull

; Use the procedure load_seg_head.pro to load the byte
; voxel data, set all data outside the head to zero,
; return the ’segmented head’ as HEAD, and return the
; thresholded surface of the head as SKULL.
; See the file load_seg_head.pro (in the wave/demo/render directory).
mask = BYTARR(width, height, depth)

mask(*, height/2:*, *) = 1

; Generate a mask plane that will split head in half,
; allowing half to be diffuse and rest to be transparent.

shell = skull * mask * BYTE(255) + $
skull * (BYTE(1) - mask) * BYTE(254)

; Half surface = 255, other half = 254
overlap = skull * head

Ray-tracing 197

overlap(WHERE(overlap GT 0)) = 1

head = head * (BYTE(1) - overlap)

; Remove portion of head that overlaps with skull.
vox = shell + head

diff = FLTARR(256) & diff(255) = 1.0 & diff(254) = 0.05

; Voxel value 255 is special, corresponding to surface of
; half head. Value 254 corresponds to surface of other
; half. Remaining values are actual unsmoothed head data
; and are not used for this example (i.e., they are completely transparent).
tran = FLTARR(256) & tran(*) = 1.0 & tran(255) = 0.0

tran(254) = 0.95

v = VOLUME(vox, Ktran = tran, Kamb = FLTARR(256), Kdiff = diff)

T3D, /Reset, Rotate = [60.0, 0.0, -45.0]

im = RENDER(v, x = 512, y = 512, Transform = !P.T)

TVSCL, im

OPENW, 1, !Data_Dir + ’trans_head.img’

WRITEU, 1, im

CLOSE, 1

END

Program Listing

PRO show_tran_head

im = BYTARR(512, 512)

OPENR, 1, !Data_Dir + ’trans_head.img’

READU, 1, im

CLOSE, 1

TVSCL, im

END

Example 8: Rendering Iso-Surfaces with Transformation Matrices

This example renders two diffuse iso-surfaces as well as actual voxel values. The
results, shown in Figure 7-8, are saved to a file and displayed using
show_core_head.

198 PV-WAVE User’s Guide

Figure 7-8 Two separate volumes are rendered simultaneously in this example, each using
a different transformation matrix.

Program Listing

PRO gen_core_head

width = 125 & height = 85 & depth = 115

load_seg_head, head, skull

; Use the procedure load_seg_head.pro to load the byte
; voxel data, set all data outside the head to zero,
; return the ’segmented head’ as HEAD, and return the
; thresholded surface of the head as SKULL.
overlap = skull * head

overlap(WHERE(overlap GT 0)) = 1

head = head * (BYTE(1) - overlap)

; Remove portion of head that overlaps with skull.
vox = head + (skull * BYTE(255))

circle = BYTARR(width, height)

radius2 = 16 * 16

; Create a circle (used for CYLINDER) mask plane.
FOR x=0, width-1 DO BEGIN

dx = x - width / 2

dx = dx * dx

Ray-tracing 199

FOR y=0, height-1 DO BEGIN

dy = y - height / 2

dy = dy * dy

IF ((dx + dy) LE radius2) THEN BEGIN

circle(x, y) = 1

ENDIF

ENDFOR

ENDFOR

core = BYTARR(width, height, depth)

; Mask out the core sample and "subtract" out from slices.
FOR z=0, depth-1 DO BEGIN

core(*, *, z) = vox(*, *, z) * circle

vox(*, *, z) = vox(*, *, z) - core(*, *, z)

ENDFOR

diff = FLTARR(256) & diff(255) = 0.6

amb = FINDGEN(256)/255.0 & amb(255) = 0.0

; Voxel value 255 is special, representing the skull surface.
v0 = VOLUME(vox, Kdiff = diff, Kamb = amb)

; Surface and interior of skull.
T3D, /Reset, Translate=[0.0, 0.0, 1.0]

v1 = VOLUME(core, Transform = !P.T, Kdiff = diff, Kamb = amb)

; Core sample.
T3D, /Reset, Rotate = [60.0, 0.0, -45.0]

im = RENDER(v0, v1, x = 512, y = 512, Transform = !P.T, /Scale)

TVSCL, im

OPENW, 1, !Data_Dir + ’core_head.img’

WRITEU, 1, im

CLOSE, 1

END

Program Listing

PRO show_core_head

im = BYTARR(512, 512)

OPENR, 1, !Data_Dir + ’core_head.img’

READU, 1, im

CLOSE, 1

TVSCL, im

END

200 PV-WAVE User’s Guide

Displaying Rendered Images
Many of the rendering routines both render and display images. However, three
rendering functions — POLYSHADE, VOL_REND and RENDER — use the
Standard Library procedures TV and TVSCL to display rendered images.

Example programs that demonstrate this usage are listed below:

• See sphere_demo3 for an example of using TVSCL with the POLY-
SHADE function.

• See sphere_demo2 for an example of using TV with the POLYSHADE
function.

• See vol_demo2 for an example of using TVSCL with the VOL_REND
function.

• See the programs in the section RENDER Examples on page 187 for examples
of using TV and TVSCL with the RENDER function.

201

CHAPTER

8

Working with Date/Time Data
Data often follows a regular pattern related to the dates and times on which busi-
ness is conducted or measurements are recorded. This data is often represented in
relation to several levels of date/time information such as seconds, minutes, hours,
days, weeks and years. In conjunction with the PLOT and OPLOT procedures, the
date/time routines let you generate two-dimensional plots that display multiple lev-
els of labeling for the date/time axis.

Introduction to Date/Time Data
PV-WAVE’s date/time feature provides a precise method for creating two-dimen-
sional plots with date/time data represented on the X axis. Once you have generated
date/time data, you can create plots that reflect various levels of time intervals. The
PLOT procedure automatically draws and labels the date/time axis. Figure 8-1
illustrates a plot with two levels of date/time labeling:

202 PV-WAVE User’s Guide

Figure 8-1 Date/time Plot

The date/time axis is well-suited for the display of data that follows an hourly,
daily, weekly, or monthly pattern; financial and meteorological data are two exam-
ples of this type of data. By default, PV-WAVE labels a date/time axis with up to
six levels of tick labels that show the time frame of the data that is being displayed.

The four basic steps for creating a date/time plot are:

❑ Read data into PV-WAVE.

❑ Convert data representing dates and/or times to date/time data.

❑ Manipulate the date/time data (optional).

❑ Plot the data.

Reading in Your Data

Read your data from an input file into PV-WAVE using a command such as
DC_READ_FREE, DC_READ_FIXED, READF or READU.

The DC_READ_FIXED and DC_READ_FREE functions can be used with the
DT_Template keyword to read data directly into date/time variables. See the
descriptions for the DC_READ_FIXED and DC_READ_FREE functions in the

Week
Month
Axis Title

Introduction to Date/Time Data 203

PV-WAVE Reference for detailed information on these routines and examples of
their use.

The READU and READF procedures can be used to read dates/times into atomic
data types, which must then be converted into date/time variables. For a complete
account of these input procedures, see Chapter 8, Working with Data Files, in the
PV-WAVE Programmer’s Guide.

Converting the Data to the Date/Time Format

If you read your data into PV-WAVE with the READU or READF procedures, you
must use conversion functions to convert the date/time information into date/time
variables.

There are four functions that you can use to convert your date/time data:
STR_TO_DT, VAR_TO_DT, SEC_TO_DT, and JUL_TO_DT. The function you
use depends on the configuration of the data you are reading in. See Converting
Your Data into Date/Time Data on page 207 for details.

TIP In some instances, your input file may not contain explicit date/time informa-
tion. You can generate a scalar date/time variable with one of the conversion
functions and then use the DTGEN function to create a date/time variable contain-
ing an array of date/time structures. See Generating Date/Time Data on page 211
for details. Also see Examples 1, 2, and 3 in Creating Plots with Date/Time Data
on page 217.

Manipulating the Date/Time Data

After you have created date/time data, you may want to alter it. PV-WAVE pro-
vides two functions, DT_ADD and DT_SUBTRACT, to add to or subtract date/
time intervals from a date/time variable. You may also want to eliminate holidays
and weekends from your data with the CREATE_HOLIDAYS and
CREATE_WEEKENDS procedures. For details, see Manipulating Date/Time
Data on page 212.

Plotting Your Data

You can plot your date/time data with PLOT or OPLOT. PV-WAVE automatically
generates labels and tick marks for your date/time data. If you want to modify the
appearance of the date/time axis, PV-WAVE provides several keywords. For
details, see Creating Plots with Date/Time Data on page 217.

204 PV-WAVE User’s Guide

The Date/Time Structure
Date/Time data is stored in a structure (!DT) containing the fields shown in the fol-
lowing table.

For example:

date = {!dt, 1992,4,27,7,45,40.0,87519.323,0}

PRINT, date

{ 1992 4 27 7 45 40.0000 87519.323 0}

For more information on structures, see Chapter 6, Working with Structures, in the
PV-WAVE Programmer’s Guide.

The Julian Field

PV-WAVE uses the Julian field to perform many date/time calculations. A date/
time value is interpreted as a day in a series of days that begins on September 14,
1752. For example, 2 is equated with September 15, 1752. The decimal part of the
Julian day indicates the time as a portion of the day. For example, for May 1, 1992
at 8:00 a.m, the Julian day is 84702.333.

Fields of the !DT Structure

Element Data Type Valid Range

!DT.Year integer 0 to 9999

!DT.Month byte 1 to 12

!DT.Day byte 1 to 31

!DT.Hour byte 0 to 23

!DT.Minute byte 0 to 59

!DT.Second floating point 0.0000 to 59.9999

!DT.Julian double precision The number of days calculated
from September 14, 1752. The
decimal part contains the time as a
fraction of a day.

!DT.Recalc byte Recalculation flag: setting this flag
to 1 forces the julian day to be
recalculated.

The Date/Time Structure 205

The Recalc Field

If you modify a date/time variable directly by assigning a new value to one of its
elements, you must also set the Recalc flag (the last element of the date/time struc-
ture) to 1. This recalculates the Julian day for the new date. For example, for a date/
time variable date that looks like:

date = {!dt, 1992, 4, 27, 7, 45, 40.0, $
87519.323, 0}

If you add three days to this variable by assigning a new value to date.day
directly.

date.day = 30

The new value of date is:

PRINT, date

{ 1992 4 30 7 45 40.0000 87519.323 0}

Notice that the Julian field 87519.323 has not changed. You must set the recalc flag
to 1 for date to obtain the correct Julian day:

date.recalc = 1

The Julian date is then recalculated automatically when the date/time variable is
used with any of the date/time functions.

NOTE Rather than modifying a date/time variable by assigning a new value to one
of its elements, you should use the DT_ADD and DT_SUBTRACT functions to
create new variables. If you use these functions, the Julian day is automatically
recalculated.

Creating Empty Date/Time Variables

Normally, you create date/time variables using the conversion functions or the
DC_READ functions. However, you can also create an “empty” date/time variable
by assigning !DT to a variable name. Here are a couple of examples:

date = {!DT}

; Creates a date/time structure filled with zeros.

PRINT, date

{ 0 0 0 0 0 0.00000 0.0000000 0}

date1 = REPLICATE({!DT}, 3)

; Creates 3 structures filled with zeros.

206 PV-WAVE User’s Guide

PRINT, date1

{ 0 0 0 0 0 0.00000 0.0000000 0}

{ 0 0 0 0 0 0.00000 0.0000000 0}

{ 0 0 0 0 0 0.00000 0.0000000 0}

NOTE When you use the DC_READ functions with the DT_Template keyword to
import and convert data, you must use this REPLICATE method to create an
“empty” array variable containing date/time structures. Once you have created this
array variable, you can read date/time data from a file into the variable. See Creat-
ing Plots with Date/Time Data on page 217 for examples.

Reading in Your Date/Time Data
Before you can generate a date/time axis on a plot, your data must be read in and
converted to date/time data. There are three methods for generating variables con-
taining date/time data:

• You can read data directly into date/time variables using the DC_READ func-
tions in conjunction with the DT_Template keyword. See for an example.

Refer to the section Transferring Date/Time Data in Chapter 8 of the PV-WAVE
Programmer’s Guide; this section contains an example showing date/time data
being transferred using DC_READ_FIXED. You can also refer to the descrip-
tions for the DC_READ_FIXED and DC_READ_FREE procedures in the PV-
WAVE Reference for other examples.

• You can read date and time data as atomic data types and then use conversion
procedures to create date/time variables. These conversion routines are dis-
cussed in the next section.

Refer to the section Transferring Date/Time Data in Chapter 8 of the PV-WAVE
Programmer’s Guide; this section contains an example showing date/time data
being transferred using the READF function. You can also refer to the descrip-
tions of the READF and READU functions in the PV-WAVE Reference for
more examples.

• You can use the DTGEN function to generate date/time data for an input file
that does not contain date/time information such as data generated by a com-
puter time stamp. See Generating Date/Time Data on page 211.

Converting Your Data into Date/Time Data 207

Converting Your Data into Date/Time Data
If you are importing date/time data into PV-WAVE, four functions simplify con-
verting this data into date/time data. These functions are:

• STR_TO_DT — Converts string data or variables containing string data into
date/time variables.

• VAR_TO_DT — Converts numeric variables containing date/time informa-
tion into date/time variables.

• SEC_TO_DT — Converts seconds into date/time variables.

• JUL_TO_DT — Converts the Julian day into a date/time variable.

Error checking is performed by these conversion functions to verify that numbers
assigned to the date/time structure elements fall within valid ranges. For more
information about these functions, see PV-WAVE Reference.

NOTE If you read and converted your data with the DC_READ routines, you do
not need to use these functions to convert your data.

The STR_TO_DT Function

This function converts date and time data stored as strings into date/time variables.
The function has the form:

result = STR_TO_DT(date_strings [, time_strings])

The Date_Fmt and Time_Fmt keywords are used to describe the format of the input
string data by specifying a template to use as the data is read. These templates are
listed in the following table.
Valid Date Formats for STR_TO_DT Function

Keyword
Value

Template Description
Examples for
May 1, 1992

1 MM*DD*[YY]YY 05/01/92

2 DD*MM*[YY]YY 01-05-92

3 ddd*[YY] YY 122,1992

4 DD*mmm[mmmmmm]*[YY]YY 01/May/92

5 [YY]YY*mm*DD 1992-01-01

208 PV-WAVE User’s Guide

The abbreviations used in the template descriptions are:

MM — The numerical month. The month does not need to occupy two spaces. For
example, you can enter a 1 for the month of January.

DD — The numerical day of the month. The day does not need to occupy two
spaces. For example, for May 5, the numerical day can be 5.

[YY]YY — The numerical year. For example, 1992 can be entered as 92 or 1992.

ddd æ The numerical day of the year. The day does not need to occupy three spaces.
For example, February 1 is 32.

mmm[mmmmmm] — The full name of the month or its abbreviation depending on
how the system variable !Month_Names is set.

* — Represents a delimiter that separates the different fields of data. The delimiter
can also be a slash (/), a colon (:), a hyphen (–), period (.), or a comma (,).

The abbreviations used in the template descriptions are:

HH — The numerical hour based on a 24-hour clock. For example, 14 is 2 o’clock
in the afternoon. For the –1 format, both spaces do not need to be occupied. How-
ever, the – 2 format requires that both spaces be occupied. For example, 1:00 in the
morning must be entered as 01.

Mn — The number of minutes in the hour. For the –1 format, both spaces do not
need to be occupied. However, the –2 format requires that both spaces be occupied.
For example, 6 minutes must be entered as 06.

SS[.SSS] — The number of seconds in the minute. A decimal part of a second is
optional.

* — Represents a delimiter that separates the different fields of data. The delimiter
can also be a slash (/), a colon (:), a
hyphen (–), or a comma (,).

Valid Time Formats for STR_TO_DT Function

Keyword
Value

Template Description
Examples for
1:30 p.m.

–1 HH*Mn*SS[.SSS] 13:30:35.25

–2 HHMn
No separators are allowed between
hours and minutes. Both hours and
minutes must occupy two spaces.

1330

Converting Your Data into Date/Time Data 209

NOTE You do not need both a date and time to use the STR_TO_DT function.
You can enter a date only or a time only. For more information, refer to the
STR_TO_DT function in the PV-WAVE Reference.

Example 1

date2 = STR_TO_DT(’3-13-92’, ’14:12:22’, $
Date_Fmt = 1, Time_Fmt = -1)

; The data contained in the strings corresponds to the date
; format MM DD YY and the time format HH Mn SS.

DT_PRINT, date2

03/13/1992 14:12:22

Example 2

date3 = STR_TO_DT(’4-12-92’, Date_Fmt = 1)

; You can convert a date without a time.

DT_PRINT, date3

04/12/92

The VAR_TO_DT Function

If you have read date/time elements into numeric variables, you can use the
VAR_TO_DT function to convert these variables into date/time variables. This
function is useful for converting time stamp data that does not conform to a format
used by the STR_TO_DT function.

This function has the form:

result = VAR_TO_DT(yyyy, mm, dd, hr, mn, ss)

Example

This example illustrates how to convert a numeric date/time value into date/time
data and verify that a date/time variable has been created using the PRINT
procedure.

z = VAR_TO_DT(1992, 11, 22, 12, 30)

PRINT, z

{ 1992 11 22 12 30 0.00000 87728.521 0}

210 PV-WAVE User’s Guide

The SEC_TO_DT Function

In some instances, scientific and engineering data has been collected at regular
intervals over long periods of time from a specified start date. Some examples
include sun spot activity or seismic data about an active volcano. The SEC_TO_DT
function is designed to handle this type of data. It converts any number of seconds
into date/time variables. These variables are calculated from a specified base time.
The default base, September 14, 1752, is defined by the system variable !DT_Base.
You can change the base time by using the keyword Base.

This function has the form:

result = SEC_TO_DT(num_of_seconds)

Example

The example shows how to convert 20 seconds to a date/time variable. The exam-
ple uses a base start date of January 1, 1970.

date = SEC_TO_DT(20, Base = ’1-1-70’, $
Date_Fmt = 1)

PRINT, date

{ 1970 1 1 0 0 20.0000 79367.000 0}

The JUL_TO_DT Function

This function converts a Julian number into a date/time variable. For more infor-
mation on how to use this function with the table functions, refer to the examples
in the section Using Date/Time Data in Tables on page 251.

This function has the form:

result = JUL_TO_DT(julian_date)

Example

dt = JUL_TO_DT(87507)

; Converts the Julian day 87507 to a date/time variable.
PRINT, dt

{ 1992 4 15 0 0 0.00000 87507.000 0}

Generating Date/Time Data 211

Generating Date/Time Data
You can generate date/time data for data files that do not have date and time stamps.
There are two steps:

❑ Create an initial date/time structure using one of four conversion functions:
STR_TO_DT, VAR_TO_DT, SEC_TO_DT, or JUL_TO_DT.

❑ Use the DTGEN function to create a variable from the original function that
contains an array of date/time structures.

The DTGEN function has the basic form:

result = DTGEN(dt_start, dimension)

Example 1

Assume that you have a file that contains seismic data collected on an hourly basis
for the month of April, 1992. The file contains the seismic data, but does not have
a time stamp appearing with each data entry. The file looks like:

Seismic data

1.03
2.04

1.33

4.45

.

.

.

The first data entry (1.03) was taken at 1:00 a.m on April 1, 1992. Each successive
entry was taken on an hourly basis for the rest of the month. To generate date/time
data for all of the hours of the month:

date1 = VAR_TO_DT(92,4,1,1)

; Use VAR_TO_DT to create the initial date/time variable for
; April 1, 1992, 1:00 a.m.

PRINT, date1

{ 1992 4 1 1 0 0.00000 87493.042 0}

dtarray = DTGEN(date1, 720, /hour)

; Generate a date/time array variable that contains a date/time
; structure for every hour in the month of April
; (24 hours * 30 days =720 hrs).

PRINT, dtarray

{ 1992 4 1 1 0 0.00000 87493.042 0}

212 PV-WAVE User’s Guide

{ 1992 4 1 2 0 0.00000 87493.083 0}

{ 1992 4 1 3 0 0.00000 87493.125 0}

.

.

{ 1992 5 1 0 0 0.00000 87523.000 0}

Example 2

You can also use the Compress keyword with the DTGEN function. This example
creates a date/time variable that contains all of the weekdays for the month of
January.

date1 = VAR_TO_DT(1992,1,1)

; Creates an initial date/time variable to use with the DTGEN function.

CREATE_WEEKENDS, [’sat’, ’sun’]

; Defines the weekend days.

dates = DTGEN(date1, 23, /Compress)

; Generates a date/time variable that contains the weekdays for
; January. The Compress keyword excludes the weekend days.

DT_PRINT, dates

01/01/1992

01/02/1992

01/03/1992

01/06/1992

01/07/1992

.

.

Notice that the 4th and 5th of January have been removed (compressed) from the
result. These days fall on Saturday and Sunday.

Manipulating Date/Time Data
PV-WAVE provides several functions for manipulating date/time variables. These
functions are:

• DT_ADD

• DT_SUBTRACT

• DT_DURATION

• CREATE_WEEKENDS

Manipulating Date/Time Data 213

• CREATE_HOLIDAYS

• LOAD_HOLIDAYS

• LOAD WEEKENDS

• DT_COMPRESS

Once you have converted your date/time data, you may want to alter it. The manip-
ulation functions provide you with the tools for adding or subtracting date/times,
or removing holidays and weekends from your date/time variables. This section
briefly describes each of these functions. For more information about these func-
tions, see the PV-WAVE Reference.

Adding to a Date/Time Variable

You may wish to add any number of date/time units to one or more existing date/
time variables with the DT_ADD function. The form of the function is:

result = DT_ADD(dt_value)

Example 1

This example illustrates how to add 30 hours to a single date/time variable to pro-
duce a new variable.

dtvar = VAR_TO_DT(1992, 12, 31, 15)

; Create a date/time variable.

dtvar1= DT_ADD(dtvar, Hour = 30)

; Create a new date/time variable by adding thirty hours to dtvar,
; an existing date/time variable.

PRINT, dtvar1

{ 1993 1 1 21 0 .0000 87768.875 0}

Example 2

The second example shows how to use the DT_ADD function to create a date/time
variable that contains all the days of the month of May excluding weekends.

dates = REPLICATE({!DT}, 21)

; Creates a date/time variable to read date/time data into.

CREATE_WEEKENDS, ["sun", "sat"]

; Defines Saturday and Sunday as weekend days.

dates(0) = VAR_TO_DT(1992, 5, 1)

; Creates an initial date/time variable to use with DT_ADD.

FOR I = 1,20 DO dates(I)=DT_ADD(dates(I-1), $

214 PV-WAVE User’s Guide

/day, /Compress)

; Generates Date/TIme structures for the remaining days of the
; month. The Compress keyword excludes the weekend days.

Subtracting from a Date/Time Variable

The function DT_SUBTRACT subtracts a value from a date/time variable or array
of variables. (This function is very similar to DT_ADD.) The basic form of the
function is:

result = DT_SUBTRACT(dt_value)

Example

dtvar = VAR_TO_DT(1993, 1, 1, 21)

; Create a date/time variable.

dtvar1= DT_SUBTRACT(dtvar, Hour = 30)

; Create a new date/time variable by subtracting 30 hours from dtvar.

PRINT, dtvar1

{ 1992 12 31 15 0 0.0000 87767.625 0}

; The new date/time variable is 30 hours less than dtvar. Notice that
; for this example the year, month, day and Julian day have changed.

Finding Elapsed Time between Two Date/Time Variables

The DT_DURATION function determines the elapsed time between two date/time
variables. The return units are a double-precision value or array of values expressed
in days and fractions of days. The function has the form:

result = DT_DURATION(dt_var_1, dt_var_2)

Example

Assume two date/time variables, dtarray and dtarray1, have been created.
The contents of dtarray are:

{ 1992 3 17 6 35 23.0000 87478.275 0}

{ 1993 4 18 7 38 47.0000 87875.319 0}

The contents of dtarray1 are:

{ 1989 5 22 9 32 22.0000 86448.397 0}

{ 1995 7 26 10 33 27.0000 88704.440 0}

You can use the DT_DURATION function to find the number of days between cor-
responding elements of the arrays.

Manipulating Date/Time Data 215

dtdiff = DT_DURATION(dtarray, dtarray1)

PRINT, dtdiff

 1029.8771 -829.12130

Note that the function returns a negative number for the second value since the sec-
ond element in dtarray1 is more recent than the second element in dtarray.

Excluding Days from Date/Time Variables

You can exclude holidays and weekend days from date/time plots using the follow-
ing functions.

CREATE_HOLIDAYS Procedure

If you wish to skip particular days such as holidays in your plots, first you must
define them. The form of the procedure is:

CREATE_HOLIDAYS, dt_list

Example

Assume that you want to exclude Christmas and New Years from a date/time
variable.

dates = [’1-1-92’, ’12-25-92’]

; Create a variable that contains the dates of holidays you wish to
; exclude.

holidays = STR_TO_DT(dates, Date_Fmt = 1)

; Create a variable that contains the date/time structures for
; Christmas and New Year.

CREATE_HOLIDAYS, holidays

; Use the CREATE_HOLIDAYS procedure to create and store the
; holidays in the system variable !Holiday_List.

PRINT, !Holiday_List

{ 1992 12 25 0 0 0.00000 87761.000 0}

{ 1992 1 1 0 0 0.00000 87402.000 0}

.

.

{ 0 0 0 0 0 0 0 0 0 0}

NOTE You can create and store up to 50 holidays. To exclude the holidays from
date/time variables, you use the keyword Compress or the system variable

216 PV-WAVE User’s Guide

!PDT.Compress. The system variable !PDT.Exclude_Holiday must also be set to a
value of 1 (the default value).

LOAD_HOLIDAYS Procedure

This procedure is called by the CREATE_HOLIDAYS procedure. It passes the
value of the !Holiday_List system variable to the conversion functions. You need
to run this procedure after restoring any session in which you used the
CREATE_HOLIDAYS function or if you directly changed the value of the
!Holiday_List system variable.

CREATE_WEEKENDS Procedure

This function allows you to define certain days of the week to skip when perform-
ing date/time operations. CREATE_WEEKENDS defines weekend days and
makes this definition available to the conversion functions and procedures. The
syntax of the procedure is:

CREATE_WEEKENDS, day_names

NOTE Do not set all seven days in the week to be weekend days. This will gener-
ate an error message.

Example

CREATE_WEEKENDS, [’Saturday’, ’Sunday’]

; Makes Saturday and Sunday the weekend days.

PRINT, !Weekend_List

1 0 0 0 0 0 1

; The system variable !Weekend_List is an array of integers where
; one = weekend and zero = weekday.

LOAD_WEEKENDS Procedure

This procedure is called by the CREATE_WEEKENDS procedure. It passes the
value of the !Weekend_List system variable to the conversion functions. You only
need to run this procedure after restoring a session in which you used the
CREATE_WEEKENDS function or if you directly changed the value of the
!Weekend_List system variable.

Creating Plots with Date/Time Data 217

NOTE Do not set all seven days in the week to be weekend days. This will gener-
ate an error message.

Example

PRINT, !Weekend_List
0 0 0 0 0 0 1

; Current contents of !Weekend_List system variable.

!Weekend_List = [1, 0, 0, 0, 0, 0, 1]

; Add Sunday to the weekend list.

LOAD_WEEKENDS

; Run LOAD_WEEKENDS so the new weekend value will take effect.

DT_COMPRESS Function

This function compresses an array of date/time values. The function returns an
array of floating point values containing the compressed Julian days—all holidays
and weekends are removed from the array.

NOTE This function is only used for specialized plotting applications, such as bar
charts. In most cases, you do not need to use this function. Instead use the Com-
press keyword to remove holidays and weekends from the results of date/time
functions and plots. For detailed information, see the description of the
DT_COMPRESS function in the PV-WAVE Reference.

Creating Plots with Date/Time Data
The plotting procedures, PLOT and OPLOT, in conjunction with keywords can be
used to plot multiple date/time labels and tick levels on the x-axis. The keywords
for the PLOT procedure for date/time include:

• XType

• Start_Level

• Month_Abbr

• Box

• DT_Range

• Max_Levels

• Compress

218 PV-WAVE User’s Guide

The keywords for OPLOT are XType and Compress. You can find a complete
description of all these keywords in Chapter 3, Graphics and Plotting Keywords, in
the PV-WAVE Reference.

The following examples show eight different types of plots with date/time axes.

Example 1: Plotting Seconds

This example illustrates how to generate a date/time plot for a data file named
datafile.dat that does not contain explicit date and time information, that is,
no time stamp information. The file contains data for every second of the day for
April 1, 1992. The one-column file looks like:

00.355187

91.9201

00.22395

63.9256

97.4526

.

.

.

The following code generates a plot that shows the first seven seconds of data. The
date/time axis is shown with the maximum of six labels.

fday = VAR_TO_DT(1992, 4, 1, 1, 1, 1)

; Generates an initial date/time variable to use with the
; DTGEN function.

num = 7

; Creates a variable for generating seven seconds of data.

x = DTGEN(fday, num, /Second)

; Generates a date/time variable with date/time structures for the
; first seven seconds of April.

status = DC_READ_FREE(’datafile.dat’, y, /Col)

; Reads the data from the file datafile.dat and assigns it to the
; variable y. The values for all of the seconds, 86400, are actually
; read into y. However, only the first seven seconds are plotted for
; this example.

PLOT, x, y, Psym = -4

; Plots the first seven seconds of data.

Creating Plots with Date/Time Data 219

Figure 8-2 A date/time plot showing the first seven seconds of data for April 1, 1992. The
keyword Psym value of -4 connects the data points with solid lines.

Example 2: Plotting Minutes

The second example uses the same data file as Example 1 (datafile.dat). The
example shows how you can plot a graph for the data at each minute rather than
each second. The Box keyword draws boxes around the tick marks and labels of the
date/time axis.

fday = VAR_TO_DT(1992, 4, 1, 1, 1, 1)

; Generates an initial date/time variable to use with the
; DTGEN function.

num = 20

; Creates a variable to use with the DTGEN function for generating
; an array of date/time structures.

x = DTGEN(fday, num, /Minute)

; Generates a date/time variable with date/time structures for
; 20 minutes in April.

status = DC_READ_FREE(’datafile.dat’, y, /Col)

; Reads the data from the file datafile.dat into the variable y.

PLOT, x, y, Psym=-4, /Box

; Plots the first 20 minutes of data with boxes around the
; date/time axis.

Seconds
Minutes
Hours
Days
Months
Years

220 PV-WAVE User’s Guide

Figure 8-3 A date/time plot for the first twenty minutes of April 1. The Box keyword draws
the boxes around the date/time labels.

If no boxes are drawn for the date/time axis, labels are centered with respect to the
tick marks for seconds, minutes, hours, and days. Weeks, months, quarters, and
years are always left-justified. See Example 1. With boxes, the labels are left-justi-
fied in relation to the tick marks.

Example 3: Plotting Hourly Data

The third example uses the same data file as Examples 1 and 2. This example plots
data for every hour of the day April 1.

fday = VAR_TO_DT(1992, 4, 1, 1, 1, 1)

; Creates an initial date/time variable to use with the DTGEN function.

num = 24

; Creates a variable used with the DTGEN function to create an
; array of date/time structures.

x = DTGEN(fday, num, /Hour)

; Creates 24 date/time structures for the hours of the day.

status = DC_READ_FREE(’datafile.dat’, y, /Col)

; Reads the data into the variable y.

Plot, x, y, Psym = -4, /Box

Minutes
Hours
Days
Months
Years

Creating Plots with Date/Time Data 221

Figure 8-4 A date/time example with the data at each hour for April 1 plotted.

Example 4: Plotting Daily Sales Data

Examples 4 through 8 plot date/time data for a file named sales1.dat that con-
tains date/time stamps for product sales. The file has ten columns. Each data set
column has an accompanying date stamp column:

Product Sales

Daily Weekly Monthly Quarterly Yearly

00 1/01/1991 159 1/06/91 1088 1/31/91 3000 910101 5280 85941

91 1/02/1991 152 1/13/91 1085 2/28/91 1942 910401 6581 86307

05 1/03/1991 202 1/20/91 0827 3/31/91 . .

. . . 2345 911001 7621 87037

. . 1147 12/31/31

. 150 12/31/91

57 12/31/1991

NOTE This data file is an example file only. It is used to generate plots for various
levels of date/time data.

Hours
Days
Months
Years

222 PV-WAVE User’s Guide

Example 4 plots the daily sales for the month of January. Weekend days are com-
pressed with the keyword Compress. The DT_Range keyword is used to plot a
portion of the date/time data read in from the file.

dates = REPLICATE({!DT}, 60)

; Create date/time structures to hold date/time data for the days
; in January and February.

CREATE_WEEKENDS, [’sun’, ’sat’]

; This procedure defines the weekend days.

status = DC_READ_FREE(’sales1.dat’, amount, $
dates, /Col, Dt_Template = [1], $
Delim = [" "], NSkip = 2, $
Get_Columns = [1, 2])

; Reads the data from Column 1 into the variable amount.
; Reads the data from Column 2 into the variable dates.
; The date/times from Column 2 are converted to date/time
; data. The NSkip keyword skips over the first two header
; lines in the file.

sdate = VAR_TO_DT(1991, 1, 1)

edate = VAR_TO_DT(1991, 1, 30)

; Creates variables to be used with the DT_Range keyword.
; These variables establish a range for plotting each day of the
; month in January.

PLOT, dates, amount, /Compress, $
Start_Level = 3, $
DT_Range = [sdate.julian, edate.julian]

; Plots the date/time data on the x-axis and the daily sales for
; the month of January on the y-axis. Weekends are
; compressed. Setting the Start_Level keyword to 3 forces the
; plot to use days as the first axis level. The DT_Range keyword
; defines the range of date/time data that will be plotted. In this
; example only the days of January are plotted.

Creating Plots with Date/Time Data 223

Figure 8-5 A date/time plot illustrating daily product sales for January. The DT_Range key-
word restricts the days to January only. The Compress keyword eliminates weekend days
(January 5, 6, 12, 13, 19, 20, 26, and 27).

Example 5: Plotting Sales Per Week

Example 5 plots the weekly sales from January 1 to May 6. The data and date/time
are read in from Columns 3 and 4 of sales1.dat.

dates = REPLICATE({!DT}, 18)

; Create date/time structure to read date/time data into.

status = DC_READ_FREE(’sales1.dat’, amount, $
dates, /Col, Dt_Template = [1], $
Delim = [" "], Get_Columns = [3,4], $
NSkip = 2)

; Read sales data into the amount variable. Read and convert
; date/time data into the dates variable.

PLOT, dates, amount, Start_Level =4, PSym = -4

; The keyword Start_Level selects weeks for plotting.

Days
Months
Years

224 PV-WAVE User’s Guide

Figure 8-6 Date/time plot of product sales for each week from January 7 to May 6. The
Start_Level keyword value of 4 ensures that the weekly amounts are plotted on the first level.

Example 6: Plotting Monthly Sales

Example 6 plots the total sales for each month. This data is contained in Columns
5 and 6 of sales1.dat. The keyword Month_Abbr automatically abbreviates
some month names to three characters depending on the available space on the
axis. In this example, no labels would be shown for the months of February or Sep-
tember without this keyword.

dates = REPLICATE({!DT}, 12)

; Creates date/time structures for the months of the year.

status = DC_READ_FREE(’sales1.dat’, $
amount, dates, /Col, Dt_Template = [1], $
Delim = [" "], NSkip = 2, $
Get_Columns = [5,6])

; Reads monthly sales data into the amount variable.
; Reads date/time data into the variable dates as date/time
; data.

PLOT, dates, amount, /Month_Abbr

; Plots data with several months abbreviated to fit labels for
; all 12 months on the date/time axis.

Weeks
Months
Years

Creating Plots with Date/Time Data 225

Figure 8-7 The monthly sales for 1991. The Month_Abbr keyword allows all month names
to be written on the date/time axis. Without this keyword, no labels would be shown for
February or September.

Example 7: Plotting Quarterly Sales

This example plots the data from Columns 7 and 8 of the sample file
sales1.dat. The date information is not in any format that can be used with the
DT_Template keyword. Therefore, the dates are first read and then converted using
the VAR_TO_DT function.

The Start_Level keyword insures that the quarterly sales are printed out on the first
level. The Max_Levels keyword defines one level of axis labels. An OPLOT is also
shown for the projected sales for each quarter of the year (the individual diamonds
in Figure 8-8). The OPLOT does not generate any tick marks or labels; you can
only plot a second set of data on the original date/time axis.

year = intarr(4) & month = intarr(4)

day = intarr(4)

; Creates variables to hold the date information for the four quarters of the year.

status = DC_READ_FIXED(’sales1.dat’, amount, $
year, month, day, /Col, NSkip = 2, $
FORMAT = (’39X, I4, 1X, 3I2)’)

; Reads the sales data into the amount variable. Reads the
; date information into the variables, year, month, and day.

dates = VAR_TO_DT(year, month, day)

; Converts the date information to a date/time variable.

PLOT, dates, amount, Start_Level = 6, /Max_Levels

; Plots the data with only one level of axis labeling.

Months
Years

226 PV-WAVE User’s Guide

; Without the Max_Levels keyword assignment, the labels
; for years would also be printed out.

amount1 = [3507, 2310, 2917, 1807]

; These are the projected sales for each quarter of 1991.

OPLOT, dates, amount1, PSym = 4

; Plots the projected sales of each quarter as individual diamonds.

Figure 8-8 The quarterly sales for 1991. The plot also shows the projected sales (individual
diamonds) for each quarter plotted with the OPLOT procedure.

Example 8: Plotting Yearly Sales

Example 8 plots the data from Columns 9 and 10 of sales1.dat. The Julian
dates are supplied in Column 10. Column 9 contains the sales for each of the last
four years.

d = lonarr(4)

; Defines the d variable as a long array containing 4 elements.
; This variable will contain the Julian dates read in from Column 10.

status = DC_READ_FREE(’sales1.dat’, $
amount, d, /Col, Delim = [" "], $
NSkip = 2, Get_Columns = [9, 10])

; Reads the sales data into the amount variable. Reads the
; date information into variable d.

dates = JUL_TO_DT(d)

; Converts the date information in variable d to a date/time variable.

Quarters

Creating Plots with Date/Time Data 227

PLOT, dates, amount, Start_Level = 7

; Plots yearly sales. The Start_Level keyword ensures that the years
; are labeled on the first level of the x-axis. If this keyword were
; omitted, quarters would be the first level of labeling.

Figure 8-9 The yearly sales for the last four years. This plot can be generated using the
JUL_TO_DT function (Example 8) or the XType keyword (Example 9).

Example 9: Plotting Yearly Sales with the XType Keyword

PV-WAVE provides another method for plotting date/time data if your file contains
Julian days as in Example 8. You can set the XType plot keyword to a value of 2 to
generate a date/time axis. Since the Julian days are provided in Column 10 for the
yearly sales data in Column 9, you can plot these two columns as follows:

dates = LONARR(4)

; Defines the dates variable as a long array containing 4 elements.

status = DC_READ_FREE(’sales1.dat’, amount, $
dates, /Col, Delim = [" "], $
Get_Columns = [9, 10], NSkip = 2)

; Reads the sales data into the amount variable.
; Reads the date information into the dates variable.

PLOT, dates, amount, XType=2, Start_Level=7

; Plots the data as shown in Figure 8-9.

See for more information about the XType keyword. Also see the description of the
DT_COMPRESS function in the PV-WAVE Reference.

Years 1

228 PV-WAVE User’s Guide

Writing Date/Time Data to a File
There are two methods for writing date/time data to a file. You can use DC_WRITE
functions to both convert and write data or you can first convert the date/time data
and then write it to a file.

Using DC_WRITE Functions

You can use DC_WRITE functions to convert data from the date/time format to
another format and then write the new date/time data to a file. The DC_WRITE
functions are easy to use because they automatically handle many aspects of data
transfer, such as opening and closing the data file.

The two DC_WRITE functions that you can use to convert and write data are
DC_WRITE_FIXED and DC_WRITE_FREE. For examples and a detailed discus-
sion of these two functions, refer to their descriptions in the PV-WAVE Reference.

NOTE By default, DC_WRITE_FREE generates CSV (Comma Separated Value)
ASCII data files.

Using Conversion Routines

You can also use three conversion routines in conjunction with the WRITE and
WRITEU procedures to convert date/time data for output to a file. The conversion
routines are:

• DT_TO_SEC

• DT_TO_STR

• DT_TO_VAR

DT_TO_STR Procedure

This procedure converts date/time variables to strings. The procedure has the form:

DT_TO_STR, dt_var

Example

Assume you have a date/time variable named date1 that contains the following
date/time structures:

{ 1992 3 13 1 10 34.0000 87474.049 0}

Writing Date/Time Data to a File 229

{ 1983 4 20 16 18 30.0000 84224.680 0}

{ 1964 4 24 5 7 25.0000 77289.213 0}

To convert to data, use the DT_TO_STR procedure:

DT_TO_STR, date1, d, t, Date_Fmt=1, Time_Fmt=-1

; Converts date/time data. Stores the date data in d and the
; time data in t. The Date_Fmt and Time_Fmt keywords define
; the formats that date1 is using. DT_TO_STR uses the same
; formats as STR_TO_DT.
; See The STR_TO_DT Function on page 207 for an
; explanation of valid formats.

PRINT, d

03/13/1992 04/20/1983 04/24/1964

PRINT, t

01:10:34 16:18:30 05:07:25

DT_TO_VAR Procedure

This procedure converts date/time variables into variables that contain numerical
date/time information. The procedure has the form:

DT_TO_VAR, dt_value

Example

Assume that you have created a date/time variable named date1 that contains the
following date/time data:

{ 1992 3 13 10 34 15.0000 87474.440 0}

{ 1983 4 20 12 30 19.0000 84224.521 0}

{ 1964 6 24 16 25 14.0000 77350.684 0}

To convert the data in this date/time variable:

DT_TO_VAR, date1, Year = years, $
Month = months, Day = days

; This procedure creates several variables containing the
; date/time data.

PRINT, ’Years =’, years

Years = 1992 1983 1964

; The keyword Year generates an integer array that contains
; the years.

PRINT, ’Months =’, months

230 PV-WAVE User’s Guide

Months = 3 4 6

; The keyword Month creates a byte array with the months.

PRINT, ’Days =’, days

Days = 13 20 24

; The keyword Day creates a byte array with the days of the month.

DT_TO_SEC Function

This function converts date/time data into seconds. The function has the form:

result = DT_TO_SEC(dt_value)

Example

Assume that you have created the array dtarray that contains the following date/
time data:
{ 1992 4 15 7 29 19.0000 87507.312 0}

{ 1993 4 15 7 29 19.0000 87872.312 0}

{ 1994 4 15 7 29 19.0000 88237.312 0}

To find out the number of seconds for each date/time from January 1, 1970, use the
DT_TO_SEC function:

seconds = DT_TO_SEC(dtarray, $
Base = ’1-1-70’, Date_Fmt = 1)

PRINT, seconds

 7.0332296e+08 7.3485896e+08 7.6639496e+08

Miscellaneous Date/Time Utility Functions
PV-WAVE contains several utilities for generating and obtaining information
about date/time variables. For more information about each of these functions, see
the PV-WAVE Reference. These include:

• TODAY

• DAY_NAME

• DAY_OF_WEEK

• MONTH_NAME

• DAY_OF_YEAR

• DT_PRINT

Miscellaneous Date/Time Utility Functions 231

The TODAY Function

This function returns a date/time variable containing the current date and time. The
form of the function is:

result = TODAY

Example

dttoday = TODAY()

PRINT, dttoday

{ 1992 3 26 7 11 14.0000 87487.299 0}

The DAY_NAME Function

This function returns a string variable or array of string variables containing the
name(s) of the day(s) of the week of the date(s) in the input variable. The form of
the function is:

result = DAY_NAME(dt_var)

Example

Assume that you have a date/time variable, date, for April 13, 1992. To find out
which day of the week this date is, enter:

day = DAY_NAME(date)

PRINT, day

Monday

The day names are accessed from the !Day_Names system variable.

The DAY_OF_WEEK Function

This function returns the day(s) of the week expressed as an integer(s) for a date/
time variable. Day 0 is Sunday, 1 is Monday, etc. The syntax of the function is:

result = DAY_OF_WEEK(dt_var)

Example

Assume that you have a date/time variable, date, for April 13, 1992. To find out
which day of the week this date is, enter:

day = DAY_OF_WEEK(date)

PRINT, day

232 PV-WAVE User’s Guide

1

; It is a Monday.

The MONTH_NAME Function

This function returns a string or array of strings containing the month name of
dt_var, where dt_var is a date/time variable. The function has the form:

result = MONTH_NAME(dt_var)

Example

dttoday = TODAY()

{ 1992 4 1 6 12 57.0000 87493.259 0}

; Create a variable that contains date/time data for today’s date.

m = MONTH_NAME(dttoday)

PRINT, m

April

; The month is April.

The month names are accessed from the system variable !Month_Names.

The DAY_OF_YEAR Function

This function returns an integer or array of integers representing the day number of
the year for each date/time value. Day numbers fall in a range between 1 and 365
(or 366 for a leap year). The syntax of the function is:

result = DAY_OF_YEAR(dt_var)

Example

dttoday = TODAY()

; Create a date/time variable.

daynumber = DAY_OF_YEAR(dttoday)

PRINT, daynumber

106

The DT_PRINT Procedure

This procedure takes the values in a date/time variable and prints these values in a
readable manner. The procedure has the form:

DT_PRINT, dt_var

Miscellaneous Date/Time Utility Functions 233

dttoday= TODAY()

DT_PRINT, dttoday

4/2/1992 7:7:51.0000

234 PV-WAVE User’s Guide

235

CHAPTER

9

Creating and Querying Tables
A table is a natural and easily understood way of organizing data into columns and
rows. Many computer applications use the table model to organize large amounts
of data. For example, the relational database stores all of its data in a tabular format.

The table functions let you create tables and subset them in various ways. These
functions are both powerful and easy to use. Tables, which you create with the
BUILD_TABLE function, can be subsetted and manipulated with the
QUERY_TABLE function. QUERY_TABLE, which closely resembles the Struc-
tured Query Language (SQL) SELECT command, is an easy-to-learn and
conceptually natural way to access data in tables.

What are the Table Functions?
The table functions include:

• BUILD_TABLE — Creates a new table from numeric or string vectors (one-
dimensional arrays) of equal length.

• QUERY_TABLE — Lets you subset, rearrange, group, and sort table data.
This function returns a new table containing the query results.

• UNIQUE — Removes duplicate elements from any vector (one-dimensional
array).

• GROUP_BY — Performs summary (aggregate) functions to groups of rows
in a PV-WAVE table variable.

• ORDER_BY — Sorts the rows in a PV-WAVE table variable to create a new
table.

236 PV-WAVE User’s Guide

Table Functions and Structured Query Language (SQL)
The syntax of the QUERY_TABLE function closely resembles the Structured
Query Language (SQL) SELECT command. SQL is a widely-used language that
allows users to access the information in relational databases (databases that are
organized as tables). Many SQL statements resemble English sentences, and thus
SQL syntax is generally easy to learn and understand. Anybody familiar with SQL
will find the QUERY_TABLE function easy to understand and use.

A Quick Overview of the Table Functions
This quick overview is intended to give you a feel for the capabilities of the table
functions. Greater detail on all aspects of these functions is provided throughout
the rest of this chapter.

Assume that a company-wide telephone system automatically collects data on var-
ious aspects of a company’s telephone calls. The system collects the date and time
of each call, the caller’s initials, caller’s extension number, area code of call, phone
number of call, call duration, and cost. This information is collected and stored in
a data file.

After you read this data into PV-WAVE, you can use the BUILD_TABLE function
to create a table. Once the table is created, you can use QUERY_TABLE to subset
the data in various ways.

Here are some typical table queries using the QUERY_TABLE function. Assume
that the name of the table (which is specified when the table is created) is
phone_data. The names of the table’s columns are just as they appear in the fol-
lowing table. Don’t worry now about the details of how the functions work, similar
queries are explained in detail later in this chapter.

DATE TIME DUR INIT EXT COST AREA NUMBER

901002 093200 21.40 TAC 311 5.78 215 2155554242

901002 094700 1.05 BWD 358 0.0 303 5553869

901002 094700 17.44 EBH 320 4.71 214 2145559893

901002 094800 16.23 TDW 289 0.0 303 5555836

901002 094800 1.31 RLD 248 .35 617 6175551999

901003 091500 2.53 DLH 332 .68 614 6145555553

901003 091600 2.33 JAT 000 0.0 303 555344

A Quick Overview of the Table Functions 237

Create a subset of the table that only shows the date, duration, and extension of
calls made.

tbl = QUERY_TABLE(phone_data, ’DATE, DUR, EXT’)

Show me all of the calls made on October 2, 1990.

tbl = QUERY_TABLE(phone_data, ’* Where DATE = 901002’)

Sort the table in descending order, by cost.

tbl = QUERY_TABLE(phone_data, ’* Order By COST Desc’)

Sort the table first in ascending order by date, then within each group of dates by
cost in descending order.

tbl = QUERY_TABLE(phone_data, ’* Order By DATE, COST Desc’)

Show me the total cost incurred from each telephone extension on October 3.

tbl = QUERY_TABLE(phone_data, $
’EXT, Sum(COST) Where DATE = 901003,’ + $
’Group By EXT’)

NOTE The second parameter in a QUERY_TABLE call is one string. The plus
sign (+) used above is the string concatenation operator. It is used because it is not
legal otherwise to break a string onto multiple lines within a PV-WAVE command.

For each extension, what was the average cost of out-of-state calls from October 3
to October 6?

tbl = QUERY_TABLE(phone_data, $
’EXT, Avg(COST) ’ + $
’Where (DATE >= 901003 AND DATE <= ’ + $
’901006) AND (AREA <> 303), Group By ’ + $ ’EXT’)

Show me the data on all of the calls that cost less than $5.00.

tbl = QUERY_TABLE(phone_data, ’* Where COST < 5.0’)

Show me the calls made by the caller with initials TAC.

901003 091600 .35 CCW 418 .27 303 5555190

901003 091600 1.53 SRB 379 .41 212 2125556618

901004 094700 .80 JAT 000 0.0 303 555320

901004 094900 1.93 SRB 379 .52 818 8185552880

901004 095000 3.77 DJC 331 1.02 512 5125551228

DATE TIME DUR INIT EXT COST AREA NUMBER

238 PV-WAVE User’s Guide

tbl = QUERY_TABLE(phone_data, ’* Where INIT = "TAC"’)

Show me the extension, date, and total duration of all calls made from each exten-
sion on each date.

tbl = QUERY_TABLE(phone_data, $
’EXT, DATE, Sum(DUR) Group By EXT, DATE’)

Creating a Table
To use the QUERY_TABLE function, you have to create a table first with the
BUILD_TABLE command. Tables are created from vectors (one-dimensional
variables) that contain the same number of elements. Each variable becomes, in
effect, a column in the table. Before you attempt to create a table, however, you
need to read your data into a set of variables.

For detailed information on reading data into PV-WAVE, see PV-WAVE Program-
mer’s Guide.

For information on creating a table that contains Date/Time data, see Using Date/
Time Data in Tables on page 251.

Once your data is read into a set of equal-sized variables, use the BUILD_TABLE
function to build a table. Each variable becomes, in effect, a separate column in the
table. Once the variables are placed into a table, QUERY_TABLE can be used to
subset and manipulate the data.

TIP In PV-WAVE, a table is represented as an array of structures. You do not have
to understand or use structures to use the table functions. However, you may want
to review the chapter on structures, PV-WAVE Programmer’s Guide, before you
proceed to learn about the table functions. Also see the section Tables and Struc-
tures on page 256.

The table columns and the original input variables are separate. The original
variables are not removed when the table is created.

Example 1: Building a Table

The following example assumes that you have defined eight variables and read data
into them. The data for this example represents information collected from a com-
pany-wide telephone system. The variable names are: DATE, TIME, DUR, INIT,
EXT, COST, AREA, and NUMBER.

Creating a Table 239

The following command builds an eight-column table from the telephone data vari-
ables. Note that BUILD_TABLE takes one parameter, a string containing the
names of the variables.

phone_data = BUILD_TABLE(’DATE, TIME, ’ +$
’DUR, INIT, EXT, COST, AREA, NUMBER’)

The result is a new table called phone_data, which is illustrated as follows.

TIP You can format and print a table so that it appears approximately like the
above example. For information on printing table data, see Formatting and Print-
ing Tables on page 254.

Using INFO to View the Table Structure

You can use the INFO command to view the table structure. Tables are represented
as arrays of structures (for more information on this, see Tables and Structures on
page 256). Thus, the Structure keyword is used with the INFO command to obtain
information on tables, for example:
INFO, /Structure, phone_data

** Structure TABLE_0, 8 tags, 40 length:

DATE TIME DUR INIT EXT COST AREA NUMBER

901002 093200 21.40 TAC 311 5.78 215 2155554242

901002 094700 1.05 BWD 358 0.0 303 5553869

901002 094700 17.44 EBH 320 4.71 214 2145559893

901002 094800 16.23 TDW 289 0.0 303 5555836

901002 094800 1.31 RLD 248 .35 617 6175551999

901003 091500 2.53 DLH 332 .68 614 6145555553

901003 091600 2.33 JAT 000 0.0 303 555344

901003 091600 .35 CCW 418 .27 303 5555190

901003 091600 1.53 SRB 379 .41 212 2125556618

901004 094700 .80 JAT 000 0.0 303 555320

901004 094900 1.93 SRB 379 .52 818 8185552880

901004 095000 3.77 DJC 331 1.02 512 5125551228

901004 095100 .16 GWP 370 0.0 303 5551245

DATE LONG 901002

240 PV-WAVE User’s Guide

Only Vectors can be Used in BUILD_TABLE

A table is built from vector (one-dimensional array) variables only. You cannot
include expressions in the BUILD_TABLE function. For example, the following
BUILD_TABLE call is not allowed:

result = BUILD_TABLE(’EXT(0:5), COST(0:5)’)

However, you can achieve the desired results by performing the array subsetting
operations first, then using the resulting variables in BUILD_TABLE. For
example:

EXT = EXT(0:5)

COST = COST(0:5)

result = BUILD_TABLE(’EXT, COST’)

In addition, you cannot include scalars or multidimensional-array variables in
BUILD_TABLE.

Example 2: Building a Different Table with the Same Data

From any given set of equal-length variables, BUILD_TABLE can use all or some
of the variables to build a table, and the table’s columns can be placed in any order.

The following table contains just four columns instead of eight. Also, the columns
appear in a different order than in the previous example.

new_tbl = BUILD_TABLE(’DATE,EXT,DUR,COST’)

Here is a portion of this new table:

TIME LONG 93200

DUR FLOAT 21.4000

INIT STRING ’TAC’

EXT LONG 311

COST FLOAT 5.78000

AREA LONG 215

NUMBER STRING ’2155554242’

DATE EXT DUR COST

901002 311 21.40 5.78

901002 358 1.05 0.0

901002 320 17.44 4.71

Querying a Table 241

Example 3: Renaming Columns

By default, BUILD_TABLE uses the original variable names as the names of the
table columns. You can rename columns by including the new name or “alias”
directly in the BUILD_TABLE command. Place the alias immediately after the
original variable name. For example, the previous new_tbl table can be created
with different column names:

rename_tbl = BUILD_TABLE(’DATE Call_Date, ’+$
’EXT Extension, DUR Call_Length,’+$
’COST Call_Cost’)

The resulting table is identical to the table created in the previous section, except
for the column names. To see the structure of this new table, enter:
INFO, /structure, rename_tbl

** Structure TABLE_0, 8 tags, 40 length:

Querying a Table
To query a table usually means to subset the data in it. The QUERY_TABLE func-
tion returns a new table containing your query results, usually a subset of the
original table.

QUERY_TABLE lets you:

• Rearrange a table and rename columns.

• Remove duplicate rows from a table.

901002 289 16.23 0.0

901002 248 1.31 .35

901003 332 2.53 .68

901003 000 2.33 0.0

CALL_DATE LONG 901002

EXTENSION LONG 311

CALL_LENGTH FLOAT 21.4000

CALL_COST FLOAT 5.78000

DATE EXT DUR COST

242 PV-WAVE User’s Guide

• Summarize related groups of data with functions that add, average, count, and
perform other calculations.

• Sort columns of data into ascending or descending order.

• Subset a table using Boolean and relational operators to retrieve specific ranges
of data.

Restoring a Sample Table

The phone_data table described in this chapter is available in a save file in the
WAVE_DATA directory. To restore this file, use the following RESTORE
command:

RESTORE, !Data_Dir+’phone_example.sav’

If you restore this file, you can practice using most of the commands described in
this chapter.

The QUERY_TABLE Function

The complete syntax (usage) of the QUERY_TABLE function is:

result = QUERY_TABLE(table,
' [Distinct] * | col1 [alias] [, ..., coln [alias]]
[Where cond]
[Group By colg1 [,... colgn]] |
[Order By colo1 [direction][,..,colon [direction]]] ')

Note that the second parameter is one long string and must be inclosed in quotes.

For a complete description of the function’s syntax, see the
PV-WAVE Reference.

Rearranging a Table

One of the simplest uses of QUERY_TABLE is to rearrange and/or rename the col-
umns of an existing table (a table already created with the BUILD_TABLE
function). To create a new table from phone_data containing only the phone
extensions, area code, and phone number of each call made, you could enter:

new_table = QUERY_TABLE(phone_data, ’EXT, AREA, NUMBER’)

Here is a portion of the resulting table:

Querying a Table 243

TIP You can print or plot data from a table. For information on printing table data,
see Formatting and Printing Tables on page 254. For information on plotting table
data, see Plotting Table Data on page 255.

Renaming Columns

The following command is similar to the previous one, except that aliases
(Extension and Area_Code) are used to rename two of the columns:

new_table = QUERY_TABLE(phone_data, $
’EXT Extension, AREA Area_Code, NUMBER’)

You can see that these new names are in effect with the INFO command:
INFO, /Structure, new_table

** Structure TABLE_QT_2, 3 tags, 16 length:

Using the Distinct Qualifier

The Distinct qualifier removes duplicate rows from the columns specified in the
QUERY_TABLE command. For example, the following command returns the
unique dates appearing in the table:

dates = QUERY_TABLE(phone_data, ’Distinct DATE’)

The result is a one-column table containing the unique dates on which data were
gathered. All duplicate dates have been filtered out of the result.

PRINT, dates
{901002} {901003} {901004}

EXT AREA NUMBER

311 215 2155554242

358 303 5553869

320 214 2145559893

289 303 5555836

248 617 6175551999

332 614 6145555553

EXTENSION LONG 311

AREA_CODE LONG 215

NUMBER STRING ’2155554242’

244 PV-WAVE User’s Guide

TIP The same basic result can be accomplished with the UNIQUE function,
described in the PV-WAVE Reference. UNIQUE returns the unique elements of any
one-dimensional array. When used to find unique elements of a table column, data-
structure notation must be used to specify the column (for more information, see
Tables and Structures on page 256). For example:

dates = UNIQUE(phone_data.DATE)

Summarizing Data with Group By

The Group By clause sorts the table into rows grouped by common values in spec-
ified columns. Used with calculation functions, Group By lets you produce
summaries of data associated with each grouping. For example, you can find the
total cost of all calls made from each extension:

new_tbl = QUERY_TABLE(phone_data, ’EXT, Sum(COST) Group By EXT’)

Or, you can find the number of calls made on each date:

new_tbl = QUERY_TABLE(phone_data, $
’DATE, Count(NUMBER) Group By DATE’)

Or, you can obtain the total duration from each extension on each date (a multiple
grouping):

tbl = QUERY_TABLE(phone_data, $
’EXT, DATE, Sum(DUR) Group By EXT, DATE’)

NOTE The GROUP_BY function performs the same basic operation as the Group
By clause of QUERY_TABLE, but with a more compact syntax. For detailed infor-
mation on GROUP_BY, see the PV-WAVE Reference.

Calculation Functions Used with Group By

Group By is always used in conjunction with one or more calculation functions,
such as Sum and Count. These functions, shown in the following table, operate on
the lowest-level grouping to produce the desired result.
Calculation Functions

Function Description Phone_Data Applications

Sum() Returns the total of the
values in the group.

total duration: Sum(DUR)
total cost: Sum(COST)

Querying a Table 245

TIP These functions are described further in the description the
QUERY_TABLE function in the PV-WAVE Reference.

Using More than One Calculation Function

More than one calculation function can be placed in a single QUERY_TABLE
command. For example, you can create a table showing the total cost and total
duration of calls made from each phone extension for the period of time the data
were collected.

cost_sum = QUERY_TABLE(phone_data, $
’EXT, Sum(COST), Sum(DUR) Group By EXT’)

This produces the new table, called cost_sum containing the columns EXT,
SUM_COST, and SUM_DUR. The cost and duration columns are renamed, by
default, with the prefix SUM_. This prevents confusion with the existing table col-
umns that are already named COST and DUR.

A portion of the resulting table is shown below. The values in the SUM_COST and
SUM_DUR columns represent the total cost and total duration of calls made from
each extension.

Count() Returns the number of
items in the group.

how many calls made:
Count(NUMBER)

Min() Returns the smallest
element in the group.

first date: Min(DATE)

Max() Returns the largest
element in the group.

last day: Max(DATE)

Avg() Returns the average of
the values in the group.

average cost: Avg(COST)
average duration: Avg(DUR)

EXT SUM_COST SUM_DUR

0 0.00000 4.49000

248 0.350000 1.31000

289 0.00000 16.2300

311 5.78000 21.4000

320 4.71000 17.4400

Calculation Functions (Continued)

Function Description Phone_Data Applications

246 PV-WAVE User’s Guide

The INFO command shows the basic structure of this new table:

INFO, /structure, cost_sum

** Structure TABLE_GB_2, 3 tags, 12 length:

 EXT LONG 0

 SUM_COST FLOAT 0.370000

 SUM_DUR FLOAT 592.140

TIP You could rename the columns in the previous command by adding an alias
after the column names. For example, Total_Cost and Total_Time are
aliases in the following function:

cost_sum = QUERY_TABLE(phone_data, $
’EXT, Sum(COST) TOTAL_COST, Sum(DUR) ’+$
’TOTAL_TIME Group By EXT’)

Multiple Groupings

Finally, you can specify more than one column in the Group By clause. For exam-
ple, you can obtain a grouping by extension and by date. The result is a “group
within a group”.

The following command produces such a table:

tbl = QUERY_TABLE(phone_data, $
’EXT, DATE, Sum(DUR) Group By EXT, DATE’)

For more information on producing multiple groupings, see the description of
QUERY_TABLE in the PV-WAVE Reference.

Sorting Data with Order By

The Order By clause is used to sort a table. Order By sorts columns into ascending
or descending order.

Suppose you want to rearrange the phone data table so that it is sorted by extension,
in ascending order (ascending order is the default). You can do this with the follow-
ing command:

ext_sort = QUERY_TABLE(phone_data, ’* Order By EXT’)

331 1.02000 3.77000

EXT SUM_COST SUM_DUR

Querying a Table 247

The asterisk (*) before Order By is a wildcard character that pulls all the columns
in phone_data into the resulting table.

A portion of the resulting table is shown below. Note that the EXT column is sorted
in ascending order.

NOTE The ORDER_BY function performs the same basic operation as the Order
By clause of QUERY_TABLE, but with a more compact syntax. For detailed infor-
mation on ORDER_BY, see the PV-WAVE Reference.

Sorting in Descending Order

Use the Desc qualifier to sort a column in descending order. For example, the pre-
vious table can be further refined by sorting the COST field in descending order:

cost_sort = QUERY_TABLE(phone_data, $
’EXT, COST, DATE Order By EXT, COST Desc’)

This command produces a subsetted table with the COST column sorted in
descending order (as specified with the Desc qualifier) within each group of exten-
sions. The following table illustrates part of the new table organization, where
extensions are sorted first, and then cost is sorted within each primary grouping of
extensions:

DATE TIME DUR INIT EXT COST AREA NUMBER

901004 95300 1.36 JAT 0 0.00 303 480320

901004 94700 0.80 JAT 0 0.00 303 480320

901002 91600 2.33 JAT 0 0.00 303 480344

901002 94800 1.31 RLD 248 0.35 617 6174941999

901002 94800 16.2 TDW 289 0.00 303 2955836

EXT COST DATE

370 0.12 901003

370 0.00 901004

379 0.52 901004

379 0.41 901003

418 0.27 901003

248 PV-WAVE User’s Guide

Subsetting a Table with the Where Clause

To produce a subset of data in a table, use the QUERY_TABLE function in con-
junction with a Where clause. A Where clause begins with the word Where and is
followed by Boolean (AND, OR, NOT) and/or relational operators (<, >, <>, =, >=,
<=) that describe how the data is to be subsetted. See the PV-WAVE Reference for
more information on these operators.

You can use relational operators (EQ, GE, GT, LE, LT, and NE in a Where clause
instead of the SQL-style operators listed above.

For example, to create a subset of the phone_data table that only contains calls
made on one particular day:

new_table = QUERY_TABLE(phone_data, ’* Where DATE = 901002’)

The asterisk (*) before Where is a wildcard character that pulls all the columns in
phone_data into the resulting table.

Here is a portion of the resulting table—only rows with date 901002 are included:

To find the calls made on 901002 with a duration of greater than 10 minutes,
enter:

new_table = QUERY_TABLE(phone_data, $
’* Where DATE = 901002 AND DUR > 10.0’)

The resulting subset is illustrated in the following table. All rows contain dates
90102 and durations greater than 10.0.

DATE TIME DUR INIT EXT COST AREA NUMBER

901002 093200 21.40 TAC 311 5.78 215 2155554242

901002 094700 1.05 2 358 0.0 303 5553869

901002 094700 17.44 1 320 4.71 214 2145559893

901002 094800 16.23 2 289 0.0 303 5555836

901002 094800 1.31 1 248 .35 617 6175551999

DATE TIME DUR INIT EXT COST AREA NUMBER

901002 093200 21.40 TAC 311 5.78 215 2155554242

901002 094700 17.44 EBH 320 4.71 214 2145559893

901002 094800 16.23 TDW 289 0.0 303 5555836

Querying a Table 249

NOTE If you are familiar with SQL, you will see that this Where clause is similar
to the Where clause in the SQL SELECT command.

Using Strings in Where Clauses

The Where clause lets you filter strings in a number of different ways. In the sim-
plest case, you want to find information related to a single string, such as a set of
initials. For example, to find the calls made by the person with the initials TAC, you
can enter:

res = QUERY_TABLE(phone_data, $
’* Where INIT = "TAC" ’)

Note that the string must be enclosed in quotes inside the function call. Also note
that double quotation marks are used to delimit TAC. This is because apostrophes
were used to delimit the entire QUERY_TABLE string parameter.

NOTE If the string is passed into the function as a variable parameter, as explained
in the section Passing Variable Parameters into Table Functions on page 249, then
the quotes are unnecessary.

In a more complex case, you can use relational and Boolean operators to filter the
strings in a column to find a particular subset of strings. For example, the following
command uses relational and Boolean operators to filter the INIT column, which
contains the initials of callers:

res = QUERY_TABLE(phone_data, $
’* Where (INIT >= "B") AND (INIT < "D") ’)

The result of this query is a new table containing information on the calls made by
people whose initials begin with the letter B and C.

Passing Variable Parameters into Table Functions

Any string or numeric constant used in the QUERY_TABLE function can be
passed in as a variable parameter. This means that you can use variables for
numeric and string values that are used in the QUERY_TABLE function. For
example, you can create a string variable called name and use it in the
QUERY_TABLE function:

name = ’TAC’

tbl = QUERY_TABLE(phone_data, ’* Where INIT = name’)

250 PV-WAVE User’s Guide

Because name is a variable and not an actual string, you do not have to enclose it
in double quotes inside the function call.

The command shown in the previous section that finds the calls made on 901002
with a duration of greater than 10 minutes can also be written with variable param-
eters in place of actual values:

day = 901002

calldur = 10.0

new_table = QUERY_TABLE(phone_data, $
’* Where DATE = day AND DUR > calldur’)

CAUTION If the variable name and the column name in a comparison are the
same, the result of the comparison simply returns “true” for all cases, and the
desired comparison may not be made. The following example is similar to the pre-
vious example, except the day variable is changed to date, which is also a
column name.

date = 901002

calldur = 10.0

new_table = QUERY_TABLE(phone_data, $
’ * Where DATE = date AND DUR > calldur’)

In this QUERY_TABLE call, DATE = date returns “true” for all cases, rather
than only for cases where the date is 901002. The comparison DATE = 901002
is not made as might be expected. Thus, try to choose column names that are dif-
ferent from the variable names.

Using the In Operator

The In operator provides another means of filtering data in a table. This operator
tests for membership in a set (one-dimensional array) of values. For example, the
following array contains a subset of the initials found in the INIT column of the
phone_data table:

nameset = [’TAC’, ’BWD’, ’TDW’, ’RLD’]

The following QUERY_TABLE call produces a new table that contains informa-
tion only on the members of nameset:

res = QUERY_TABLE(phone_data, ’* Where INIT In nameset’)

Using Date/Time Data in Tables 251

Combining Multiple Clauses in a Query

You can place more than one clause in a QUERY_TABLE call to produce more
complicated and specific queries. Once you understand the basic parts of
QUERY_TABLE, combining these parts into more complex queries is a straight-
forward process.

Within the QUERY_TABLE function, the Group By and Order By functions are
mutually exclusive. That is, you cannot place both Group By and Order By in the
same QUERY_TABLE call.

Example

The following command produces a table that:

• includes only calls with a duration of more than one minute.

• includes only calls with an area code not equal to 303 (out-of-state calls only).

• sorts the table by phone extension, in ascending order.

• sorts the table, within extension subgroups, by date in descending order.

• sorts the table, within date subgroups, by duration in ascending order.

result = QUERY_TABLE(phone_data, $
’* Where (DUR > 1.0) And (AREA <> 303) ’+ $
’Order By EXT, DATE Desc, DUR Desc’)

A portion of the table is shown below:

Using Date/Time Data in Tables
In the previous examples, the DATE column contains long integer values that rep-
resent the dates of calls. Instead of using long integers to represent the dates, you

DATE TIME DUR INIT EXT COST AREA NUMBER

901002 094800 1.31 RLD 248 .35 617 6175551999

901002 093200 21.40 TAC 311 5.78 215 2155554242

901002 094700 17.44 EBH 320 4.71 214 2145559893

901004 095000 3.77 DJC 331 1.02 512 5125551228

901003 091500 2.53 DLH 332 .68 614 6145555553

901004 094900 1.93 SRB 379 .52 818 8185552880

901003 091600 1.53 SRB 379 .41 212 2125556618

252 PV-WAVE User’s Guide

may be able to read the date data into a date/time variable. Once in the Date/Time
format, the dates can be converted to strings, placed in a table, and manipulated
with QUERY_TABLE. In addition, query results can be converted back into Date/
Time form and plotted on with a Date/Time axis.

Read the Date Data into a Date/Time Variable

Instead of reading the date data (901002, 901003, etc.) into a long integer, read it
into an array of Date/Time variables. For detailed information on reading date data,
see Reading in Your Date/Time Data on page 206. This section contrasts the vari-
ous alternatives you have available for reading date/time data.

Two Methods of Handling Date/Time Data in Tables

This section discusses two ways to handle Date/Time data in a table. It assumes that
data has been read into a Date/Time variable. The first method discussed involves
converting the Date/Time variable to a string variable, which you can use to build
and subset a table. The second method involves manipulating the Date/Time data
directly as Julian day values.

Method 1: Convert the Date/Time Data to Strings

Convert the Date/Time variable to a String using the DT_TO_STR procedure. For
example:

DT_TO_STR, dtdata, dates, Date_Fmt=5

This converts the Date/Time values into strings of the format [YY]YY*MM*DD.
The advantage of this format is that it allows dates to be compared directly as
strings. For example:

"1992-02-01"

precedes
"1993-03-02"

Subsetting the Table

Once you have created string variables from the original Date/Time data, you can
build a table using these string variables, and use the strings in query commands:

this_date=QUERY_TABLE(phone_data, ’* Where DATE = "1990-10-03"’)

Using Date/Time Data in Tables 253

Plotting the Table with a Date/Time Axis

To plot the table with a Date/Time axis, you have to first convert the dates back into
Date/Time data. To do this, use the STR_TO_DT function. For example:

PLOT, STR_TO_DT(phone_data.DATES), phone_data.COST

Method 2: Create a Table that Includes the Date/Time Variable

This method deals directly with the Julian day part of the Date/Time structure.
Assuming that the Date/Time variable is called DATE, the following commands
create a new table containing three columns:

JDATE=DATE.Julian

; Create a new variable JDATE that contains the Julian date
; equivalents for each date. This is necessary because you cannot
; place a Date/Time structure directly in a table; tables must consist
; of vector (one-dimensional array) variables only.

new_ph_tbl = BUILD_TABLE("EXT, COST, JDATE")

; Create the table.

Subsetting the Table

The following query picks out all rows where DATE is less than or equal to October
3, 1990:

TDate = VAR_TO_DT(90,10,03)

END_DATE = TDate.Julian

; Create a Date/Time variable called END_DATE, and set the
; variable equal to the Julian equivalent of October 3, 1990.

New_Table = QUERY_TABLE(new_ph_tbl, ’* where JDATE <= END_DATE’)

; Produce a subset of the table.

Plotting the Table with a Date/Time Axis

To plot the resulting table data with a Date/Time axis, the date data must be con-
verted back to a Date/Time variable. The following command performs the
conversion:

New_Dates = JUL_TO_DT(new_ph_tbl.JDATE)

When the data is plotted, PV-WAVE determines that New_Dates is a Date/Time
variable, and plots a Date/Time axis automatically. For example:

PLOT, New_Dates, new_ph_tbl.COST

; Plots the dates on the x-axis and the cost on the y-axis.

For more information on plotting table data, see Plotting Table Data on page 255.

254 PV-WAVE User’s Guide

Formatting and Printing Tables
The simplest way to print a table is with the command:

PRINT, table_name

Unfortunately, the output from such a statement is not formatted in a readable, pre-
sentable manner.

Printing the Table without Column Titles

To print the phone_data table without column headings, simply enter:

WAVE> for i=0,N_ELEMENTS(phone_data)-1 do $
begin PRINT, phone_data(i)

This prints a readable, neatly organized representation of the table. The PRINT
statement accesses each column of the table directly, using the basic structure nota-
tion, which is:

Variable_Name.Tag_Name

For more information on the relationship between structures and tables, see Tables
and Structures on page 256.

Printing the Table with Column Titles

To achieve a presentable format with column titles requires a slightly more com-
plicated approach. For example, the following procedure prints a formatted version
of the phone_data table to the screen and places titles above each column. The
Format keyword in the PRINT statement uses FORTRAN-style format specifiers
to format the rows. For detailed information on format specifiers, see the PV-WAVE
Reference. You can also refer to the description of the PRINT function in the PV-
WAVE Reference.

PRO pr_table, t_name

PRINT, ’ DATE TIME DUR INIT EXT ’+ $
’ COST AREA NUMBER ’

for i = 0, N_ELEMENTS(t_name) - 1 do begin

PRINT, Format = ’(I6, 1X, I6, 3X, F5.2, 3X, ’ + $
’A3, 3X, I3, 2X, F5.2, 3X, I3, 3X, A10)’, $
t_name(i).DATE, t_name(i).TIME, $
t_name(i).DUR, t_name(i).INIT, $
t_name(i).EXT, t_name(i).COST, $
t_name(i).AREA, t_name(i).NUMBER

Plotting Table Data 255

ENDFOR

END

After the procedure is compiled with .RUN, the following command prints the for-
matted phone_table to the screen:

WAVE> pr_table, phone_data

Plotting Table Data
You can plot table data easily using the plot procedures. For example, the following
example plots the call duration vs. the cost. The PLOT statement accesses the col-
umns of the table directly, using the basic structure notation, which is:

Variable_Name.Tag_Name

For more information on the relationship between structures and tables, see Tables
and Structures on page 256.

This command produces a scattergram that plots the call duration on the X axis
against the cost along the Y axis:

DATE TIME DUR INIT EXT COST AREA NUMBER

901002 93200 21.40 TAC 311 5.78 215 2155554242

901002 94700 1.05 BWD 358 0.0 303 5553869

901002 94700 17.44 EBH 320 4.71 214 2145559893

901002 94800 16.23 TDW 289 0.0 303 5555836

901002 94800 1.31 RLD 248 0.35 617 6175551999

901003 91500 2.53 DLH 332 0.68 614 6145555553

901003 91600 2.33 JAT 000 0.0 303 555344

901003 91600 .35 CCW 418 0.27 303 5555190

901003 91600 1.53 SRB 379 0.41 212 2125556618

901003 91600 .45 MLK 370 0.12 212 2125557956

901004 94700 .80 JAT 000 0.0 303 555320

901004 94900 1.93 SRB 379 0.52 818 8185552880

901004 95000 3.77 DJC 331 1.02 512 5125551228

901004 95100 .16 GWP 370 0.0 303 5551245

901004 95300 1.36 JAT 000 0.0 303 555320

256 PV-WAVE User’s Guide

PLOT, phone_data.DUR, phone_data.COST, $
Psym = 4, Title = ’Duration vs. Cost’, $
XTitle = ’Duration’, YTitle = ’Cost’

Figure 9-1 Plot of data from a table.

Tables and Structures
As noted previously, a table is represented as an array of structures. Although it is
not necessary to understand or use structures to use table functions, this section
gives a brief overview of their relationship. For more information on structures, see
in the PV-WAVE Programmer’s Guide.

The basic syntax of structures is:

{Structure_name, Tag_Name1 : Tag_Def1 , ...,
Tag_Namen : Tag_Defn }

The simplest way to refer to a field in a structure is:

Variable_Name.Tag_Name

When you create a table with BUILD_TABLE, the name of the table becomes the
Variable_Name, and the columns are Tag_Names for the underlying structure. The

Returning Indices of a Subsetted Table 257

actual name of the structure, Structure_Name, is assigned by the system. You can
see this name when you list the table’s structure with the INFO command. (In the
example shown in Using INFO to View the Table Structure on page 239, this name
is TABLE_0.)

You could print the values of one column of phone_data with the command:

PRINT, phone_data.EXT

To print the first fifteen phone extensions, you could enter the command:

PRINT, phone_data(0:14).EXT

Column names must be expressed in structure notation when used in the UNIQUE
function. For example:

dates = UNIQUE(phone_data.DATE)

The UNIQUE function is described in the PV-WAVE Reference.

Returning Indices of a Subsetted Table
In some situations you might want to build a table and associate index numbers
with each row in the result. These index numbers can be useful, particularly when
the result of a query generates a very large table that requires a large amount of
memory to store. One way to save memory in such a situation is to create a query
statement that generates a result containing only the indices of the rows that you
are interested in. Then, a print statement allows you to print the rows of interest
without first storing them in a variable, which, in some cases, might be too large to
hold in memory along with the original table.

The following example demonstrates this technique. In this example, a new table
is built from phone_data with an extra column called INDEX. This extra col-
umn is simply a 1D array of integers in the range {0...14} created with the
INDGEN function.

INDEX = INDGEN(15)

Now, a new table is created from the original table of telephone data, with INDEX
included as one of the table’s columns.

newtbl = BUILD_TABLE(phone_data, ’INDEX, EXT, DUR, COST’)

Next, this new table can be subsetted with QUERY_TABLE so that the result con-
tains only the indices of the rows in which you are interested. Because the resulting
table contains only the indices of the desired rows, much less memory is required
to store the result than if all of the data in the desired rows were stored.

258 PV-WAVE User’s Guide

result = QUERY_TABLE(newtbl, ’INDEX Where COST > .50’)

Finally, the following statements perform a more meaningful sort, where the indi-
ces stored in result are used to locate the desired rows in the newtbl table.

FOR i=0, N_ELEMENTS(result) - 1 DO BEGIN $
PRINT, newtbl(result(i).index)

NOTE This method of subsetting tables based on row indices does not work if a
Group By clause is used in the QUERY_TABLE command. The reason for this is
that Group By clauses typically return the results of calculations, and these results
usually have no counterpart in the original table.

Other Methods of Subsetting and Sorting Variables
PV-WAVE provides other functions for subsetting and sorting the values in one-
dimensional arrays. The SORT function sorts the subscripts of an array into
ascending order. For example:

array = [4, 3, 7, 1, 2]

index = SORT(array)

PRINT, index
3 4 1 0 2

This results because: A3 < A4 < A1 < A0 < A2. To see the sorted array, enter:

PRINT, array(index)
1 2 3 4 7

The WHERE function allows the use of Boolean expressions to select ranges of
subscripts in an array. For example:

index = WHERE((array GT 50) AND (array LT 100))

result = array(index)

For more information on these functions, see the PV-WAVE Reference.

259

CHAPTER

10

Using Fonts
PV-WAVE can produce text output using either software or hardware fonts. Soft-
ware fonts, sometimes called vector-drawn fonts or Hershey fonts, are internal to
PV-WAVE and are drawn with line vectors. Hardware fonts are built into specific
output devices, such as PostScript printers and window systems. PV-WAVE simply
sends the characters to the graphics device, which displays them using these
built-in fonts.

This chapter discusses how to work with both software and hardware fonts.

Software vs. Hardware Fonts: How to Choose
The following sections briefly discuss the things to consider when deciding
whether to use software or hardware fonts.

Appearance of Text

Software characters are of medium quality, suitable for most uses. The appearance
of hardware-generated characters varies from mediocre (such as the characters
found in some window systems) to publication quality (for example, PostScript and
Windows True Type fonts).

3D Transformations

Software and some hardware characters go through the same 3D transformations
as the rest of the plot, yielding a better looking plot. Hardware font drivers that

260 PV-WAVE User’s Guide

support 3D transformations include X Windows, WIN32 (on Windows NT
platforms only), PostScript, and WMF.

Text Rotation

Both hardware and software fonts can be rotated. For example, you can use the Ori-
entation keyword with the XYOUTS procedure to rotate a text string.

Portability of Text

The appearance and availability of hardware fonts varies greatly from device to
device, and thus are not be as portable as software fonts.

In general, the software fonts work the same way on any graphics device and look
the same, within the limitations of device resolution. Thus, it is possible to produce
graphics on one device and send it to another without worrying about character out-
put. Note, however, that software fonts are scaled relative to the size of the active
hardware font. Changing the size of the hardware font will rescale the size of the
software font.

UNIX and OpenVMS USERS You may notice that under X Windows the size
of the software fonts varies from device to device. When you start PV-WAVE, the
hardware font is set to the current hardware font of the X server. Not all X servers
will have the same default font size because users can reconfigure the default font
and the default font can differ between X servers. Therefore, you may discover that
the hardware font size, and therefore the software font size, may vary across differ-
ent workstations. You can avoid this by explicitly setting the X font using the
DEVICE procedure. For example:

DEVICE, font=’-adobe-courier-medium-r-normal--14-*’

Speed of Plotting

It takes more computer time to draw characters with line vectors (software fonts),
and generally results in more input/output. This is not an important issue, however,
unless the plot contains a large number of characters or the transmission link to the
device is slow.

Using Software Fonts 261

Localized Fonts

“Local” fonts refer to fonts that contain characters that are required for a specific
language. For example, a font designed for French text contains characters that are
not found in an English text font.

The PV-WAVE software fonts contain a limited set of localized characters. If you
require characters outside this set (French characters, for example), then you must
use a suitable hardware font.

For information on adding a local font to the set of available hardware fonts, see
String Resource File for Font Mappings on page 266.

Using Software Fonts
To use software fonts, you must set the value of the !P.Font system variable to –1.
This is the default setting. For example:

WAVE> !P.Font = -1

This section explains how to format software text and select different software
fonts.

You can embed formatting and font commands in the string arguments of plotting
keywords such as Title, Subtitle, XTitle, and YTitle and in the string parameter of
the XYOUTS procedure.

Software Font Formatting Commands

You can accomplish a wide variety of text formatting effects, such as subscripting,
superscripting, and equation formatting, by embedding formatting commands
directly in text strings. For example, the Title keyword definition:

Title = ’E = mc!U2’

produces the following title when plotted:

This example uses the !U formatting command, which shifts the 2 up into a super-
script. More examples of text formatting appear later in this chapter.

The following table describes all of the available formatting commands.

262 PV-WAVE User’s Guide

NOTE If you break a line of text using !C, you may have to increase the !X and/
or !Y margin fields to allow room for the extra line(s) of text.

Changing Software Fonts

You can change software fonts by embedding a font selection command directly in
a text string. The default font is called Simplex Roman, and its font command !3.
The following statement changes the font from the default to Complex Roman (!6):

Title = ’!6E = mc!U2’

This produces the following title when plotted:

Text Formatting Commands

Format Command Description

!A Shift above the division line.

!B Shift below the division line.

!C Create a multiple-line annotation. For example:
plot, x, y, title= $
'First Line!CSecond Line'
(See the Note above.)

!D Shift down to the first level subscript and
decrease the character size by a factor of 0.62.

!E Shift up to the exponent level and decrease the
character size by a factor of 0.44.

!I Shift down to the index level and decrease the
character size by a factor of 0.44.

!L Shift down to the second level subscript.
Decrease the character size by a factor of 0.62.

!N Shift back to the normal level and original char-
acter size.

!R Restore position. The current position is set
from the top of the saved positions stack.

!S Save position. The current position is saved on
the top of the saved positions stack.

!U Shift to upper subscript level. Decrease the
character size by a factor of 0.62.

!! Print the ! symbol.

Using Software Fonts 263

You can change the font anyplace in a string by embedding a font command where
you want the font change to occur. However, note that the selected font remains in
effect until explicitly changed with another embedded font command.

NOTE Plot titles, subtitles, and axis titles are drawn in a particular order. You need
to keep this order in mind when you mix the fonts used to annotate plots, because
subsequently drawn items “inherit” their font from previously drawn items. The
order is:

1. Main title
2. Subtitle
3. X axis numbers
4. X axis title
5. Y axis numbers
6. Y axis title
7. Z axis numbers
8. Z axis title

TIP To achieve some kinds of font combinations in a single plot, you may need to
use the OPLOT procedure to overplot some of the text.

There are 17 different software fonts to choose from. They are illustrated in , in the
PV-WAVE Reference.

More examples showing font selection appear later in this chapter. The following
table lists the font selection commands.
Font Selection Commands

Font Command Description

!3 Simplex Roman (default)

!4 Simplex Greek

!5 Duplex Roman

!6 Complex Roman

!7 Complex Greek

!8 Complex Italic

264 PV-WAVE User’s Guide

Using Hardware Fonts
To use hardware fonts, you must set the value of the !P.Font system variable to 0
(zero). For example:

WAVE> !P.Font=0

NOTE By default, software fonts are enabled (!P.Font is set to –1).

TIP If you want to use hardware fonts by default, add the statement !P.Font=0 to
the PV-WAVE startup file.

Hardware Font Formatting Commands

In general, you can use hardware fonts in the same way you use software fonts. The
text formatting commands (for example, !U) and font commands (for example, !3)
described and listed in the previous section can all be used with hardware fonts.

!9 (!M) Math and special characters

!10 Special characters

!11 (!G) Gothic English

!12 (!W) Simplex Script

!13 Complex Script

!14 Gothic Italian

!15 Gothic German

!16 Cyrillic

!17 Triplex Roman

!18 Triplex Italic

!20 Miscellaneous

Font Selection Commands (Continued)

Font Command Description

Using Hardware Fonts 265

NOTE A string resource file is used to map software font commands to specific
hardware fonts. A resource file with default settings is provided; however, you can
easily change these defaults. This resource file is described in detail in String
Resource File for Font Mappings on page 266.

Using PostScript Formatting Commands

NOTE The default PostScript fonts changed with PV-WAVE 6.21. The previous
default PostScript font was 12 point Helvetica. The new default PostScript font is
14 point Times Roman. You can change the default font by editing the file
fontmap_ps, which is discussed in String Resource File for Font Mappings on
page 266.

PV-WAVE provides a set of DEVICE procedure keywords that can be used to set
the default font for the PostScript driver. See the appendix called Output Devices
and Window Systems in the PV-WAVE Reference for a list of these DEVICE
keywords.

For example, to set the default PostScript font to boldface Helvetica, use the
commands:

SET_PLOT, ’ps’

DEVICE, /helvetica, /bold

Additional Text Formatting Commands

The following formatting commands for hardware fonts can be used with the
WIN32, WMF, X, and PostScript drivers:

Formatting
Command

Description

!FB Switch to the bold face of the current font.

!FI Switch to the italic face of the current font.

!FU Underline the current font.

!FN Switch to the normal form of the current font.

!Pxx Switch to point size xx of the current font,
where xx is a two digit integer (01-99).

266 PV-WAVE User’s Guide

String Resource File for Font Mappings
PV-WAVE provides a string resource file that lets you map PV-WAVE software
font commands to device-specific hardware fonts. This section explains the basic
format and location of this file.

Format of the Fontmap String Resource File

The string resource file used for font mapping consists of a tab or space separated
list of font numbers and target fonts. For example, the first five lines of the default
fontmap file for the WIN32 driver are as follows:

For example, if the output device is set to WIN32 and hardware fonts are selected
(!P.Font = – 1), then you can use the !5 command in a text string to produce Times
New Roman, 14 point, boldface text in your plot:

XYOUTS, x, y, ’!5Carbon Dioxide Data’

Location of the Fontmap String Resource File

By default, the fontmap string resource files for each device are in:

(UNIX) <wavedir>/xres/!Lang/kernel

(OpenVMS) <wavedir>:[XRES.!Lang.KERNEL]

(Windows) <wavedir>\xres\!Lang\kernel

Where <wavedir> is the main PV-WAVE directory.

Files are named according to the convention: fontmap_device. For example, the
fontmap file for the WIN32 device is:

fontmap_win32

TIP If you change the fontmap_x file to add a localized font, we recommend
that you make a similar change to the fontmap_ps file. The reason for this is that
VDA Tools assume that the X Window and PostScript font number load equivalent
fonts.

3 Times New Roman, 14

4 Symbol, 14

5 Times New Roman, 14, Bold

6 Times New Roman, 14, Bold, Italic

7 Symbol, 14, Bold, Italic

Text Formatting Examples 267

Using the WAVE_FONTMAP_PATH Environment Variable

You can also use the environment variable WAVE_FONTMAP_PATH to specify a
path of directories to search for the font map file.

Font map files are named by the following convention:

GETENV(’WAVE_FONTMAP_FILEBASE’) + ’_device’

where device is one of the following supported devices:

The default value of the variable WAVE_FONTMAP_FILEBASE is fontmap.
Thus, the default font mapping file for the WIN32 driver is:

<wavedir>\xres\!Lang\kernel\fontmap_win32

TIP The value of WAVE_FONTMAP_FILEBASE can be the name of a hidden file.

Text Formatting Examples
The following sections demonstrate how to format text strings.

Example 1: Basic Text Formatting

This example demonstrates the effects of the text formatting commands, where !N
indicates the normal text level and the original character size. It displays the text
using the XYOUTS procedure. The following code produced the text shown in
Figure 10-1. In this example, the default font is used.

b = ’!LLower !NNormal!S!UUp!R!DDown’ + $
’!N!S!AAbove!R!BBelow’

XYOUTS,.02,.2,b,size=3,/Normal

Device Description

WIN32 WIN32 Driver

WMF Windows Metafile Driver

X X Windows Driver

PS PostScript Driver

268 PV-WAVE User’s Guide

Figure 10-1 Formatted text

Example 2: Changing the Position of Text

This example demonstrates further the use of formatting commands to change the
relative position of text. In this example, the font is changed from the default to the
Complex Roman font (!6). The result is shown in Figure 10-2:

A = ’!6!L!!L!S!E!!Exponent!R!I!!Index’ + $
’!N!!N!S!I!!I!R!E!!E!N’ + $
’!S!U!!U!S!I!!I!R!E!!E!R!D!!D!S’ + $
’!E!!E!R!I!!I!N !S!A!!A!S!E!!E!R!I’ + $
’!!I!R!B!!B!S!E!!E!R!I!!I’

XYOUTS, .02, .5, A, Size = 5, /Normal

Figure 10-2 Formatted text

Example 3: Multiple Fonts within a Single String

The third example illustrates the effects of changing the font, and illustrates how
complex mathematical symbols can be represented. The code used to produce each
line is shown in the figure. The Detailed Discussion section below explains specif-
ically how the integral term shown at the bottom of Figure 10-3 was produced.

Text Formatting Examples 269

Figure 10-3 Changing text font and formatting mathematical expressions

Detailed Discussion

The bottom integral term shown in Figure 10-3 was formed by the procedure call:

XYOUTS, 0, .2,’!MI!S!A!E!8x!R!B!Ip!N!7q’ + $
’!Ii!N!8U!S!E2!R!Ii!N dx’,SIZE=3,/NORMAL

The formatting commands used to produce Figure 10-3 are summarized in the fol-
lowing table.
Formatting Commands Used in Example 3

Format Command Description

!MI Changes to math set and draws the integral
sign, uppercase I.

!S Saves the current position on the position
stack.

!A!E!8x Shifts above the division line and to the expo-
nent level, switches to font 8 the Complex
Italic font, and draws the “x”.

!MI!S!A!E!8x!r!b!ip!N !7q!ii!n!8U!S!E2!r!ii!N dx

!6E=mc!E2 !3E = mc!E2

!wDr. A. V. Hershey

270 PV-WAVE User’s Guide

Example 4: Annotating a Plot

This example shows a 2D plot that uses formatted software characters for annota-
tion. The following statements were used to produce Figure 10-4.

X = FLTARR(128)

; Define an array.

X(30:40) = 1.

; Make a step function.

X = ABS(FFT(X,1))

; Take FFT and magnitude.

PLOT_OI, X(0:64), Xtitle = ’!17Frequency’,$
Ytitle = ’!5Power’, Title = $
’!18Example of Vector-Drawn P1ot’, $
Position = [.2, .2, .9, .6]

; Produce a Log-Linear plot. Use the Triplex Roman font for
; the x title (!17), Duplex Roman for the y title (!5), and Triplex
; Italic for the main title (!18). The Position keyword is used to
; shrink the plotting “window”.

!R!B!Ip Restores the position to the position immedi-
ately after the integral sign, shifts below the
division line to the index level and draws the
“p”.

!N! 7q Returns to the normal level, advances one
space, shifts to the Complex Greek font
(number 7), and draws the greek letter “rho”
which is designated by “q” in this set.

!Ii!N Shifts to the index level and draws the “i” at
the index level. Returns to the normal level.

!8U Shifts to the Complex Italic set (number 8),
and outputs the uppercase “U”.

!S!E2 Saves the position and draws the exponent
“2”.

!R!Ii Restores the position and draws the index “i”.

!N dx Returns to the normal level and outputs “dx”.

Formatting Commands Used in Example 3 (Continued)

Format Command Description

Text Formatting Examples 271

ss = ’!6F(s) = (2!4p)!e-1/2!N !MI!S!A!E!’ + $
’M!R!B!I!M!!NF(x)e !e-i2!4p!3xs!n!MDx’

; String to produce equation.

XYOUTS, 0.1, 0.75, ss, Size = 3, /Normal, /Noclip

; Output string over plot. The Noclip keyword is needed because
; the previous plot caused the clipping region to shrink.

Figure 10-4 Example of a plot drawn with software text

272 PV-WAVE User’s Guide

273

CHAPTER

11

Using Color in Graphics Windows
There are numerous systems for measuring and specifying color; these systems
typically have three components. PV-WAVE accepts color specifications in the
RGB, HLS, or HSV color systems.

Understanding Color Systems
A color system is an algorithm for defining color. Color values are defined in the
specified color system and then used by the color table to control the colors on the
screen. Different systems use different combinations of values to describe the same
color.

Most devices capable of displaying color use the RGB (red, green, blue) color
system. Other common color systems include the Munsell, the HSV (Hue,
Saturation, Value), the HLS (Hue, Lightness, Saturation), and the CMY (Cyan,
Magenta, Yellow) color systems. Many algorithms have been written to convert
colors from one system to another, and PV-WAVE has the conversion routines you
will need to successfully use color with graphics. From the command line or from
within a program or compiled procedure, you can use the COLOR_CONVERT
procedure to convert vector or scalar color table values from one system to another.

Color System Overview

The color systems available include:

• RGB — Red, Green, and Blue (the default)

• HLS — Hue, Lightness, and Saturation

274 PV-WAVE User’s Guide

• HSV — Hue, Saturation, and Value

NOTE For either 8-bit or 24-bit color, RGB is the default color system.

For a more complete discussion of color systems, refer to either of these sources:

• Fundamentals of Interactive Computer Graphics, J.D. Foley and A. Van Dam,
Addison-Wesley Publishing Company, Reading, MA, 1982.

• Computer Graphics: Principles and Practice, by Foley, Van Dam, Feiner, and
Hughes, Second Edition, Addison Wesley Publishing Company, Reading, MA,
1990.

Parts of this discussion are taken from these books.

The RGB Color System

The RGB color system uses a three-dimensional Cartesian coordinate system with
the value of each color ranging from 0 to 255. Each displayable color is a point
within this cube, as shown in Figure 11-1. The origin, (0, 0, 0), where each color
coordinate is 0, is black. The point at (255, 255, 255) is white and represents an
additive mixture of the full intensity of each of the three colors. Points along the
main diagonal are shades of gray, because the intensity of each of the three prima-
ries is equal.

All primary and secondary colors are found on corners of the cube. For example,
refer to Figure 11-1, and notice that the color yellow is represented by the coordi-
nate (255, 255, 0), or a mixture of 100% red plus 100% green plus 0% blue.

Cyan

White

Yellow

Green

Blue

Black

Red

Magenta (255,255,255)

(255,255,0)

(0,255,255)

(255, 0, 255)

(0,0,255)

(0,0,0)

(255, 0, 0)

(0,255,0)

Understanding Color Systems 275

Figure 11-1 RGB color cube. Primary and secondary colors are located at the corners of
the cube; grays are along the main diagonal. (After Foley and Van Dam).

How RGB Color Triples Map into Pixels

Typically, digital display devices represent each component of an RGB color coor-
dinate as an n-bit integer in the range of 0 to 2n – 1. Each displayable color is an
RGB coordinate triple of n-bit numbers — this yields 23n total colors. For the com-
mon example of 8-bit colors, each color coordinate may range from 0 to 255, and
the number of color combinations to choose from would be 224 or 16,777,216
colors.

A display with an m-bit pixel can represent 2m colors simultaneously, as long as the
display actually possesses that many pixels. For the increasingly common case
where the red, green, and blue components of the color are each represented with
an 8-bit value, 24-bit pixels are required to present as many colors on screen as
there are pixels.Eight bits per pixel permits the simultaneous display of 28 = 256
colors. selected from the much larger set of 224 colors.

Windows USERS You can run PV-WAVE on a 24-bit display; however,
PV-WAVE only uses 256 colors.

For a more thorough comparison of 8-bit and 24-bit displays, refer to the PV-WAVE
Reference.

If there are not enough bits in a pixel to represent all colors, or in other words, m <
23n, a color translation table (also known as a color lookup table or simply a color
table) is used to associate the value of a pixel with a color triple. This table is an
array of color triples with an element for each possible pixel value. Given 8-bit pix-
els, a color table containing 28 = 256 elements is required. The color table element
with an index of i specifies the color for pixels with a value of i.

To summarize, given a display with an n-bit color representation and an m-bit pixel,
the color translation table, C, is a 2m long array of RGB triples:

Ci = {ri, gi, bi}, 0 ≤ i < 2m

0 ≤ ri, gi, bi < 2n

Objects containing a value, or color index, of i are displayed with a color of Ci.

276 PV-WAVE User’s Guide

The HSV and HLS Color Systems

The HSV and HLS color systems can be represented as a color solid; HSV uses an
ordinary cone, while HLS uses a two-pointed cone. Any cross section through the
solid represents a particular color wheel, in which saturation increases radially
from the center. As the cross sections progress from the base of the cone to the top
point of the cone, the resulting color wheels increase in lightness.

NOTE In both the HLS and the HSV color systems, hue can vary through a range
of 0 degrees (red) to 120 degrees (green) to 240 degrees (blue) to 360 degrees (red).

The HLS Color System

The HLS system is based on the Ostwald color system, which uses hue, lightness,
and saturation values, as defined below:

• Hue is a term used to distinguish between colors. It is usually represented as a
360-degree color wheel, with red at 0 degrees, green at 120 degrees and blue
at 240 degrees. Complementary colors are 180 degrees apart on the wheel.

• Lightness corresponds to what is intuitively known as the brightness or inten-
sity of a color.

• Saturation refers to how pure (or conversely, how diluted with white) a color
is. For example, saturation is what distinguishes lavender from purple, or sky
blue from royal blue.

In other words, with the HLS color system, each color index (color table color)
comprises values of hue, lightness, and saturation. Hue represents a gradation of
color ranging through all the colors. When you select a color in the color table and
change its hue, you get a different color. Lightness defines the color on a scale from
dark to light, with zero being black and 100 white.

Modifying the saturation produces colors that are more or less gray. A zero value
for saturation produces a gray color, while a saturation of 100 produces a pure color
with no gray. Saturation has no effect at the extreme ends of the cone (i.e., when
lightness equals either 0 or 1).

The HSV Color System

HSV is based on hue, saturation, and value elements, as defined below:

• Hue is a term used to distinguish between colors. It is usually represented as a
360-degree color wheel, with red at 0 degrees, green at 120 degrees and blue
at 240 degrees. Complementary colors are 180 degrees apart on the wheel.

Using Color to Enhance Visual Data Analysis 277

• Saturation refers to how pure (or conversely, how diluted with white) a color
is. For example, saturation is what distinguishes red from pink, or meadow
green from hunter green.

• Value corresponds to what is intuitively known as the brightness or intensity of
a color.

In other words, with the HSV color system, each color index (color table color)
comprises values of hue, saturation, and value. Hue represents a gradation of color
ranging through all the colors. When you select a color in the color table and
change its hue, you get a different color. Saturation represents a range of the color
from white (zero) through the fully saturated color (100). Value is a range from
black (zero) through the pure color (100).

Using Color to Enhance Visual Data Analysis
Color is a valuable aid in the visual analysis process, because it can be used to take
advantage of the human brain’s capability to distinguish fine gradations of shade
and intensity. Color can also be used to simply draw one’s attention to a certain part
of the screen, or to a certain region of a plot or image.

This section discusses:

✔ loading predefined and custom color tables

✔ modifying color tables to create special effects

✔ plotting colors used for the elements of “simple” plots

UNIX and OpenVMS USERS To use color, you must use a workstation that is
capable of utilizing a display with color. However, no information is lost if you
open a saved session on a monochrome or gray-scale workstation that was origi-
nally saved on a color workstation.

Experimenting with Different Color Tables

Most color workstations cannot display more than a certain number of colors (usu-
ally 256) at once. For this reason, color tables are used to map red, green, and blue
values into the available colors on the workstation.

PV-WAVE includes an assortment of 16 predefined color tables with enough vari-
ety to produce visually pleasing results for many applications, or you can define
your own color table.

278 PV-WAVE User’s Guide

You can use either the TVLCT or the LOADCT procedures to load the color table
on the current device:

• LOADCT — This procedure loads predefined color tables stored in the file
colors.tbl. This file is in:

(UNIX) <wavedir>/bin

(OpenVMS) <wavedir>:[BIN]

(Windows) <wavedir>\bin

Where <wavedir> is the main PV-WAVE directory.

• TVLCT — This procedure loads color tables stored in user-defined variables.
Once the variables are loaded into the color table, it is used like any other color
table.

The color table functions let you modify the colors used to display images, shaded
surfaces, and vector graphics inside graphics windows. Vector graphics colors (also
called plot colors) let you control the colors assigned to elements of line plots, scat-
ter plots, contour plots, and unshaded surfaces. For more information on how to
manipulate plot colors, see Controlling Plot Colors on page 286.

For color and gray-scale devices, the default is to display 8-bit graphics using the
color table B–W Linear (standard color table number 0).

UNIX and OpenVMS USERS On a monochrome display, by default, color
graphics are dithered. For more information about dithering, see Displaying
Images on 24-bit Devices (UNIX/OpenVMS) on page 130.

Number of Colors in the Color Table Under UNIX/OpenVMS

Under UNIX and OpenVMS, the color table will allocate as many colors as it can,
but the number of colors it can actually use is affected by the type of system you
have and its configuration:

• Graphics output to “simple” graphics devices (for example, Tektronix ter-
minals or emulators) — The color table defines all 256 colors, even though the
device can probably only uniquely display a much smaller number of colors,
such as 16, 32, or 64. The device will automatically begin to reuse colors when-
ever it reaches its limit.

• Graphics output in a multi-tasking windowing environment (for example,
the X Window System) — By default, the color table defines (and allocates)
every color that has not been previously allocated by the window manager or
some other application.

Using Color to Enhance Visual Data Analysis 279

For more information about how to reserve colors for the window manager in an X
environment, refer to the PV-WAVE Reference.

Loading a Predefined Color Table: LOADCT

Use LOADCT to load one of the predefined color tables. There are 16 color tables,
ranging from 0 to 15, in the file colors.tbl. This file is in:

(UNIX) <wavedir>/bin

(OpenVMS) <wavedir>:[BIN]

(Windows) <wavedir>\bin

Where <wavedir> is the main PV-WAVE directory.

The standard color tables are listed in the following table.

LOADCT has one parameter — the index of the predefined color table to be
loaded. For example, the following command loads the Red Temperature color
table:

LOADCT, 3

NOTE To obtain a menu listing of the available color tables, call LOADCT with
no parameters.

Standard Color Tables

No. Color Table Name No. Color Table Name

0 Black and White Linear 8 Green/White Linear

1 Blue/White 9 Green/White Exponential

2 Green/Red/Blue/White 10 Green/Pink

3 Red Temperature 11 Blue/Red

4 Blue/Green/Red/Yellow 12 16 Level

5 Standard Gamma-II 13 16 Level II

6 Prism 14 Steps

7 Red/Purple 15 PV-WAVE Special

280 PV-WAVE User’s Guide

Loading Your Own Color Tables: TVLCT

Use the TVLCT procedure to load a color table using data stored in variables.
When calling TVLCT, you supply three vectors containing the intensity or value of
each color (red, green, and blue) for each index. Given an n-bit color representa-
tion, each element must be in the range of 0 to 2n – 1. These vectors may contain
up to 2m elements, assuming the display contains m-bit pixels. You can also supply
an index pointing into the color translation table, but this is optional. If not speci-
fied, a value of 0 is used, causing the tables to be loaded starting at the first element
of the translation table vectors.

The TVLCT procedure can also use optional keyword parameters. For information
on the keywords, see the TVLCT description in the PV-WAVE Reference.

Example — Modifying Color Tables from the Command Line

The INDGEN function is well-suited for creating larger color tables in which each
color’s intensity can be expressed as a function of its index. In this example, IND-
GEN is used to create a linear 256-element color table that is then used to display
images in a variety of ways:

A = INDGEN(256)

; Create a “straight line” variable, A(I)=I.

TVLCT, A, A*0, A*0

; Display image with a linear red scale; disable green and blue.

TVLCT, A, A, A

; Display image with linear black and white scale.

TVLCT, A, 2 * (A-128) > 64, 4 * (A-192) > 0

; Display image with a warm-body temperature scale. Red is linear
; (starting at 0), green starts at 128, and blue starts at 192.

Modifying the Color Tables

PV-WAVE provides many commands and widget-based utilities that you can use
to modify existing color tables and to create new ones. Many of the possibilities are
described in the following sections.

The color table modifications discussed in this section only affect the contents of
PV-WAVE graphics windows. If you need to control the colors used in the back-
ground, foreground, and border of your window-managed GUI (graphical user
interface), you must use different techniques than those described in this section.
For more information about selecting GUI colors, refer to Setting Colors and Fonts
in the .

Using Color to Enhance Visual Data Analysis 281

Modifying the Predefined Color Tables

The MODIFYCT procedure is used to update the file colors.tbl with a new
color table (i.e., a new named color table that will take the place of one of the color
tables in colors.tbl). This file is in:

(UNIX) <wavedir>/bin

(OpenVMS) <wavedir>:[BIN]

(Windows) <wavedir>\bin

Where <wavedir> is the main PV-WAVE directory.

This procedure should only be used by persons authorized to change the predefined
color tables supplied with PV-WAVE. In other words, you may need to contact
your System Administrator for assistance.

NOTE Except for editing colors.tbl directly, the MODIFYCT command is
the only way to modify the predefined standard color tables. For detailed informa-
tion about using the MODIFYCT command, refer to the MODIFYCT description
in the PV-WAVE Reference.

Modifying Color Tables Using Widget-based Utility Tools

PV-WAVE provides several widget-based tools that you can use to interactively
modify the color tables.

• WgCeditTool — A full-featured set of menus and widgets enclosed in a win-
dow; this window allows you to edit the values in PV-WAVE color tables in
many different ways. WgCeditTool also provides a way to save your color table
changes using a name that you choose. The WgCeditTool window is shown in
Figure 11-2.

• WgCbarTool — A simple vertical or horizontal color bar that can be used to
interactively shift a PV-WAVE color table. WgCbarTool can easily be included
inside larger container widgets. The WgCbarTool window is shown in Figure
11-3 on page 283.

• WgCtTool — A simple widget that can be used interactively to modify a color
table. WgCtTool provides widgets that you can use to stretch, rotate, and
reverse the current color table. The WgCtTool window is shown in Figure 11-
4 on page 285.

WgCeditTool, WgCbarTool, and WgCtTool can only be used if you are also run-
ning a window manager. If you are an experienced programmer, consider providing
access to these widget-based utility tools via your PV-WAVE application, so that

282 PV-WAVE User’s Guide

people using your application can interactively modify and create new color tables
without entering commands at the WAVE> prompt.

Figure 11-2 PV-WAVE provides several widget-based tools that you can use to interactively
modify the color tables. Here, the WgCeditTool window displays color table number 0, B–W
Linear. The WgCeditTool window lets you use the mouse to create a new color table based
on either the HLS, HSV, or RGB color systems.

Shifting the Color Table to the Left or Right

Shifting Colors from the PV-WAVE Prompt

This section discusses how the color table’s red, green, and blue components can
be altered with the SHIFT function to produce a modified color table. Shifting the
color table in this manner produces the same basic effect as shifting it with
WgCbarTool, except you can precisely control the amount of shifting that occurs
and use different amounts of shifting for the red, green, and blue components. For
information about WgCbarTool, see the next section.

You can “shift” the color table to the left or right to change the color indices that
are associated with each color value. All the color table values are still present in
the color table, but the color table uses different colors for the start and the end.

Using Color to Enhance Visual Data Analysis 283

TIP Following the same basic procedure, you can experiment with other functions
and procedures to produce different effects in the color table, such as producing a
nonlinearly interpolated color ramp.

To shift the color table, access the three color variables, as described in Retrieving
Information About the Current Color Table on page 285. Then process each of the
three variables (red, green, and blue) by shifting them some amount, such as:

shr = SHIFT(r_curr, 28)

shg = SHIFT(g_curr, 56)

shb = SHIFT(b_curr, 84)

The amount of shifting can be any integer amount up to 236 (Windows) or 256
(UNIX/OpenVMS) (if you are using all available colors). Remember that a shift of
zero (0) is equivalent to no shifting of the variable.

After the variables are processed, use them to load the current color table using the
TVLCT command.

Shifting Colors Using the Utility Widget WgCbarTool

WgCbarTool creates a simple color bar that can be used to view and interactively
shift a color table. The horizontal form of the color bar is shown in Figure 11-3.

To rotate the color table using the color bar, press and drag the left mouse button
inside the color bar. As you “slide” colors into different color table indices, the col-
ors that “scroll off” the end of the color table are added to the opposite end.

Figure 11-3 WgCbarTool creates an array of colors that match the colors in the current color
table; the color array can be shifted to the right or left using the mouse. This color bar widget
has been created using the /Horizontal option; the default is for the color bar to be displayed
in a vertical orientation.

284 PV-WAVE User’s Guide

Smoothing the Color Transitions in a Color Table

This section describes a technique for smoothing out any place in a color table
where there is a sharp transition from one color to the next color. This technique
involves the SMOOTH function.

This technique helps a color table seem less harsh and helps reduce the banding or
“contouring” artifact evident in color tables that have rapid transitions between col-
ors. Otherwise, you may see an artificially pronounced transition in data that
actually has no rapid transitions.

To smooth the color table, access the three color variables, as described in Retriev-
ing Information About the Current Color Table on page 285. Then process each of
the three variables (red, green, and blue) by smoothing them by some amount, such
as:

smr = SMOOTH(r_curr, 5)

smg = SMOOTH(g_curr, 5)

smb = SMOOTH(b_curr, 5)

Initially, start out with a width of 5 (this is the width of the “boxcar” smoothing
window), and adjust that width up or down as needed to get the most pleasing
results. Additionally, you may want to broaden the boxcar smoothing width if you
are using all 256 (UNIX/OpenVMS) or 236 (Windows) colors.

After the variables are processed, use them to load the current color table using the
TVLCT command.

Stretching the Color Table

This section describes how to linearly expand a range within a color table to pro-
vide more detail for that range of pixel values.

Stretching Colors from the PV-WAVE Prompt

For example, the color table’s red, green, and blue components could be stretched
to emphasize a certain range of values in the image. To stretch all three compo-
nents, enter this command:

STRETCH, 15, 90

STRETCH linearly interpolates new red, green, and blue color vectors between the
low number and the high number. In other words, the low number (15) is the pixel
value that is displayed with color index 0, and the high number (90) is the pixel
value that is displayed with the highest color index available. Pixel values between
15 and 90 are displayed proportionately, and pixels outside the range are displayed
with either the “low color” or the “high color”.

Using Color to Enhance Visual Data Analysis 285

NOTE The STRETCH procedure does not affect the data or the current color table
stored in the Colors common block; it only affects the way the data is displayed.
For information about the Colors common block, see Retrieving Information
About the Current Color Table on page 285.

Stretching Colors Using the Utility Widget WgCtTool

WgCtTool allows you to interactively modify system color tables by stretching,
rotating, and reversing them. A range of color table indices, as defined by the
Stretch Bottom and Stretch Top sliders, can be linearly stretched.

The Stretch Bottom number is used for the first parameter to the STRETCH
command, and the Stretch Top number is subtracted from the number of colors
available in the color table to determine the second parameter to the STRETCH
command. For more information about the STRETCH command, refer to the pre-
vious section or to the description for STRETCH in the PV-WAVE Reference.

Figure 11-4 The WgCtTool window lets you interactively modify system color tables by
stretching, rotating, and reversing them. The color bar in WgCtTool is the same one shown
separately in Figure 11-3.

NOTE Because system color tables are “read-only”, no system color table will be
permanently altered by any changes you make with the WgCtTool window.

Retrieving Information About the Current Color Table

Most color table procedures maintain the current color table in a common block
called Colors, defined as follows:

COMMON Colors, r_orig, g_orig, b_orig, r_curr, g_curr, b_curr

286 PV-WAVE User’s Guide

The variables are integer vectors of length equal to the number of color indices.
Your program can access these variables by declaring the common block. The con-
vention is that routines that modify the current color table should read it from
r_orig, g_orig, and b_orig, and then load and leave the resulting color table
in r_curr, g_curr, and b_curr.

Controlling Plot Colors

The currently loaded color table determines plot colors (see the following discus-
sion entitled Default Plot Colors). Plot colors are those colors used to display data,
axes, axis titles, and other elements of line plots, scatter plots, contour plots, and
unshaded surfaces. But it is possible that the current color table (or any other stan-
dard color table) does not provide the colors you wish to use for plotting your data.

For example, in many of the color tables, there are only subtle differences between
adjacent colors in the middle range of the color table. This makes many of the stan-
dard color tables better suited for the display of images than they are for the display
of data inside a line plot or bar chart.

To customize your plot colors, load new red, green, and blue color vectors defining
the colors you want. To load new color vectors, use the technique demonstrated in
the example in this section, or use the TVLCT procedure. The TVLCT procedure
is discussed in Loading Your Own Color Tables: TVLCT on page 280.

Another quick way to obtain a nice set of plot colors is using the TEK_COLOR
procedure. The TEK_COLOR procedure is handy because it loads a color table
that mimics the 32 distinct plot colors of the Tektronix 4115 display device. The
TEK_COLOR procedure is discussed in Using the TEK_COLOR Command to
Control Plot Colors on page 289.

For more information about the standard color tables, refer to Loading a Predefined
Color Table: LOADCT on page 279.

Default Plot Colors

By default, when drawing vector graphics on the screen using the default color
table, Black and White Linear, PV-WAVE draws a white line on a black back-
ground. However, you can use the Color keyword (with the PLOT command) to
choose any other available color. For example:

PLOT, x_data, y_data, Color=144,

Unless you supply the Color keyword, color index 0 (often a dark color) is used for
the background, and the highest color index (often a light color) is used for the
lines. This means that by default, a light color is used for plotting data, axes, titles,

Using Color to Enhance Visual Data Analysis 287

and so forth. The highest color index is stored in a system variable, !D.N_Colors.
For more information about !D.N_Colors, see the section entitled Determining the
Number of Available Plot Colors on page 287.

NOTE Some hardcopy devices that print on white paper automatically swap the
foreground and background colors so that on paper, the lines are drawn with a dark
color instead of a light color. Otherwise, the hardcopy would be drawn with white
on white, and the paper would appear blank. (Please be aware that some color out-
put devices do not adhere to this convention, although most monochrome output
devices do.)

Determining the Number of Available Plot Colors

Use the system variable !D.N_Colors to find out the number of simultaneously
available colors for a particular device. In the case of devices with windows, this
field of the device (!D) system variable is set after the window is initialized.

NOTE For monochrome systems, !D.N_Colors is 2, and for color systems it is
normally 256. Under Windows, !D.N_Colors is always 256.

If you are using PV-WAVE in a multi-tasking environment under the control of a
window manager, some color indices may be reserved for the window manager and
for other applications that are running simultaneously with PV-WAVE, and this in
turn will affect the value of D.N_Colors.

UNIX and OpenVMS USERS For more information about why colors are
reserved for the window manager in an X environment, refer to the PV-WAVE
Reference.

288 PV-WAVE User’s Guide

Figure 11-5 PV-WAVE provides sixteen standard color tables, and users can easily modify
these color tables or define their own. Here, the COLOR_PALETTE procedure is displaying
every other color in the current color table, along with its color table index. The black cells in
the upper-right corner of the window represent colors that are not available to PV-WAVE
because they have been reserved by some other application, such as the window manager.
The Motif version of the color palette is shown here.

TIP The COLOR_PALETTE procedure displays an array of color cells and the
color table index associated with each one, as shown in Figure 11-2. The largest
number you see displayed in the array of color cells reflects the current value of
!D.N_Colors. For more information on this procedure, see the PV-WAVE
Reference.

Example — Creating a Simple Color Table to Control Plot Colors

This example creates a graph with the axes drawn in white (on a black back-
ground), then successively adds red, green, blue, and yellow lines. Because five
distinct colors are needed, plus one color for the background, a six-element color

Using Color to Enhance Visual Data Analysis 289

table is created. In this color table, color index 0 represents black (0, 0, 0), color
index 1 is white (1, 1, 1), 2 is red (1, 0, 0), 3 is green (0, 1, 0), 4 is blue (0, 0, 1),
and 5 is yellow (1, 1, 0).

red = [0,1,1,0,0,1]

; Specify the red component of each color (1 = full intensity, 0 = no intensity)...

green = [0,1,0,1,0,1]

; ... green component.

blue = [0,1,0,0,1,0]

; ... blue component.

TVLCT, 255*red, 255*green, 255*blue

; With a single command, multiply each element in the red, green,
; and blue vectors, and load the first six elements of the color table.
; The remaining colors in the color table are not affected.

PLOT, Color = 1, /Nodata,

; Draw the axes in white, color index 1.

OPLOT, Color = 2,

; Draw in red.

OPLOT, Color = 3,

; Draw in green.

OPLOT, Color = 4,

; Draw in blue.

OPLOT, Color = 5,

; Draw in yellow.

NOTE For this example to work on your display, your display must have at least
three bits per pixel so it can simultaneously represent six colors. An 8-bit color
table is assumed.

Using the TEK_COLOR Command to Control Plot Colors

Another easy way to change the colors in the lower end of the color table is to enter
the TEK_COLOR command; this command loads 32 predefined, unique, highly
saturated colors into the bottom 32 indices of the color table. When the
TEK_COLOR color table is in effect, you will be able to easily differentiate the dif-
ferent data sets in a line plot.

290 PV-WAVE User’s Guide

Example

The TEK_COLOR procedure has no keywords or parameters, so it is simple to use.
This example shows how the TEK_COLOR colors can be used to produce bright,
vibrant fill colors.

b = FINDGEN(37)

x = b * 10

y = SIN(x * !Dtor)

; Create an array containing the values for a sine function from 0 to 360 degrees.
PLOT, x, y, XRange = [0,360], XStyle=1, YStyle=1

; Plot data and set the range to be exactly 0 to 360.
COLOR_PALETTE

; Display of the current color table and its associated color indices.
TEK_COLOR

; Load a predefined color table that contains 32 distinct colors.
POLYFILL, x, y, Color = 6

POLYFILL, x, y/2, Color = 3

POLYFILL, x, y/6, Color = 4

; Fill in areas under the curve with different colors.
z = COS(x * !Dtor)

; Create an array containing the values for a COS function from 0 to 360 degrees.
OPLOT, x, z/8, Linestyle = 2, Color = 5

; Plot the cosine data on top of the sine data.

NOTE The color table indices specified with the Color keyword must be in the
range {0 … 31} to take advantage of the bright colors created by the TEK_COLOR
procedure. Color table indices above 31 are not affected by the TEK_COLOR pro-
cedure, and will remain as defined by the previously loaded color table.

Specifying Plot Colors on a 24-bit Display (UNIX/OpenVMS)

For your convenience, PV-WAVE allows 24-bit colors to be specified in hexadec-
imal notation. You may want to enter hexadecimal colors if you are controlling plot
colors on a 24-bit display. Because this is most frequently done while operating
under the control of a window manager in an X Window System environment, refer
to the PV-WAVE Reference for more details.

Device-specific Methods for Using Color 291

Device-specific Methods for Using Color
Use the SET_PLOT procedure to direct the graphics output to different devices. A
scalar string you provide with the command identifies the device to which you wish
to send graphics output.

Color Tables — Switching Between Devices

Because devices have differing capabilities, and not all are capable of representing
the same number of colors, the treatment of color tables when switching devices is
somewhat tricky. See the PV-WAVE Reference for details on each supported device.

After selecting a new graphics output device, SET_PLOT will perform one of the
following color table actions depending upon which keyword parameters are
specified:

• Do nothing — This is the default action. The problem with this treatment is
that PV-WAVE’s internal color table incorrectly reflects the state of the
device’s color table until TVLCT is called.

• Copy the device color table — If the Copy keyword parameter is set, the inter-
nal color table is copied into the device. This is the preferred method if you are
displaying graphics and each color index is explicitly loaded.

The color table copying is straightforward if both devices have the same num-
ber of color indices. If the new device has more colors than the old device,
some color indices will be invalid. If the new device has less colors than the
old, not all the colors are saved.

NOTE When the Interpolate keyword is set, the new device color table is loaded
by interpolating the old color table to span the new number of color indices. This
method works best when displaying images with continuous color ranges.

Combining Colors to Create Special Effects

You can use the write mask to specify one or more color planes whose bits you wish
to manipulate or the plane you want to use to create the special effects. The way
the special effects are rendered also depends on the value you provide for the
graphics function. For more details, refer to the PV-WAVE Reference.

The write mask is used to control how one graphics pattern interacts with another
graphics pattern when plotting to a graphics window. The write mask allows you
to create special effects when overlaying or superimposing images and patterns.

292 PV-WAVE User’s Guide

UNIX and OpenVMS USERS For example, some 24-bit displays allow the
screen to be treated as two separate 12-bit images. This allows for “double-buffer-
ing”, a technique useful for animation, or for storing distance data to simplify
hidden line and plane calculations in 3D applications.

Another possible application for the write mask is to simultaneously manage two
4-bit-deep images in a single graphics window instead of a single 8-bit-deep image.
You could use the write mask to control whether the current graphics operation
operates on the “top” image or the “bottom” image.

Summary of Color Table Procedures
The Standard Library procedures listed in this section are used to manipulate color
tables. Some of the procedures are basic procedures that you use programmatically
to change color tables, and others are window-based procedures that facilitate
interactive modifications. For detailed information on any of these routines, see the
PV-WAVE Reference.

Basic Color Table Procedures

These commands can always be entered at the WAVE> prompt:

• COLOR_CONVERT — This procedure converts vector or scalar color table
values from one color system to another. The supported color systems are HSV,
HLS, and RGB.

• HIST_EQUAL_CT — This procedure uses an input image parameter, or the
region of the display you mark, to obtain a pixel distribution histogram. The
cumulative integral is taken and scaled, and the result is applied to the current
color table.

• HLS — This procedure makes and loads color tables based on the HLS color
system. This system is based on the Ostwald color system. As with the HSV
procedure, spirals are interpolated in a three-dimensional color space.

• HSV — This procedure makes and loads color tables based on the HSV color
system. A spiral through the single-ended HSV cone is traced. The color rep-
resentation of pixel values is linearly interpolated from beginning and ending
values of hue, saturation, and value.

• LOADCT — This procedure loads predefined color tables. To obtain a menu
listing of the available color tables, call LOADCT with no parameters.

Summary of Color Table Procedures 293

• MODIFYCT — This procedure is used to update the file
(colors.tbl) that lists the system color tables. This procedure should only
be used by persons authorized to change the predefined color tables supplied
with PV-WAVE.

• PSEUDO — This procedure generates and loads a pseudo color table based
on the HLS color system. The colors it generates are theoretically “a near max-
imal entropy mapping” for the eye. The parameters are similar to those used
with the HLS and HSV procedures.

• STRETCH — This procedure linearly expands the entire range of the last
color table loaded by a PV-WAVE procedure to cover a given range of pixel
values.

• TEK_COLOR — This procedure loads a color table that mimics the 32 dis-
tinct plot colors of the Tektronix 4115 display device. These colors ensure that
the various datasets in a line plot or bar chart are easy to differentiate.

• TVLCT — This procedure loads color tables stored in variables. Once the
variables are loaded into the color table, it is used like any other color table.

Interactive Color Table Procedures

The procedures listed in this section create windows of varying complexity that can
be used to interactively make modifications to color tables.

Interactive (Wave Widgets) Color Table Procedures

The procedures listed in this section are WAVE Widgets applications, and thus are
available using the Motif look-and-feel. For more information on WAVE Widgets,
refer to the PV-WAVE Application Developer’s Guide.

• WgCbarTool — This procedure creates a simple color bar that can be used to
view and interactively shift a color table.

• WgCeditTool — This procedure creates a full-featured set of menus and wid-
gets enclosed in a window; this window allows you to edit the values in color
tables in many different ways.

• WgCtTool — This procedure creates a simple widget that can be used interac-
tively to modify a color table.

NOTE The window-oriented procedures listed in this section will not work unless
you are using an X-compatible window manager, such as Motif. All procedures are

294 PV-WAVE User’s Guide

written in the PV-WAVE language and they all use the TVLCT procedure to load
the color tables.

Interactive (Generic) Color Table Procedures

The procedures listed below create windows that have a “generic” look-and-feel:

• C_EDIT — This procedure allows the interactive creation of color tables
based on the HLS or HSV color system. C_EDIT is similar to the
COLOR_EDIT procedure, except that this implementation provides better
control of HSV colors near zero percent saturation.

• COLOR_EDIT — This procedure creates color tables interactively using the
HLS or the HSV color system. A temporary window is created containing a
color wheel and bars for intensity and pixel value. The mouse is used to select
the three color parameters and the corresponding pixel value. Color values are
interpolated between selected pixel values. Graphs showing the three color
parameters as a function of value are displayed in the right half of the window.

• COLOR_PALETTE — This procedure displays the current color table in a
separate window with color indices overwritten on the display. This is a handy
procedure for finding out what color in the current color table is associated
with a particular color index.

• PALETTE — This procedure displays an interactive window that lets you cre-
ate color tables with RGB slider bars and allows good selection and control of
each color index. It can interpolate in RGB space between color indices or edit
a single color index.

NOTE All procedures are written in the PV-WAVE language and they all use the
TVLCT procedure to load the color tables.

Windows USERS Some of these routines, such as C_EDIT and COLOR_EDIT,
are written to be used with a three-button mouse. If you are using a two-button
mouse, you can use the <Alt> key in combination with the left mouse button to
simulate a middle mouse button.

295

CHAPTER

12

Mapping with PV-WAVE
The PV-WAVE mapping procedures let you create a variety of mapping applica-
tions. Scientific data, economic data, aerial photography data, and other kinds of
data can be plotted with maps generated by PV-WAVE.

Figure 12-1 The data points plotted on this map of the United States represent lightning
strikes recorded by remote sensors.

This chapter discusses how to use the PV-WAVE mapping procedures, and
includes the following topics:

• Introduction

• Using Map Projections and Datasets

296 PV-WAVE User’s Guide

• Creating and Customizing Maps

• How to Optimize Your Mapping Application

• Accessing Other Map Datasets

• Defining Your Own Projections

• Creating Interactive Map Applications

Introduction
Typical uses for the PV-WAVE mapping procedures include:

• Scientific applications where wide-area data is plotted with coastline and polit-
ical boundaries.

• Business applications where geographic data is displayed and highlighted to
reflect a measured quantity.

• Military, environmental, and remote sensing applications where satellite imag-
ery and digitized aerial photography are integrated with maps.

The mapping procedures, map datasets, and demonstration files are located in the
PV-WAVE mapping directory:

(UNIX) $VNI_DIR/mapping-1_1

(OpenVMS) VNI_DIR:[MAPPING-1_1]

(Windows) %VNI_DIR%\mapping-1_1

Where VNI_DIR is the main Visual Numerics installation directory.

The PV-WAVE mapping procedures can be adapted easily to work with your own
projections and map datasets. The mapping procedures include:

• MAP — Plots map data with a specified projection.

• MAP_CONTOUR — Plots contours on a map.

• MAP_PLOTS — Plots vectors or points on the current map projection.

• MAP_POLYFILL — Fills specified regions of a map.

• MAP_REVERSE — Converts X-Y coordinate data to longitude and latitude
coordinates.

• MAP_VELOVECT — Plots a two-dimensional vector field on a map.

• MAP_XYOUTS — Adds text to a map.

• USGS_NAMES — Queries a database of longitude/latitude coordinates for
states, counties, cities, and towns in the United States.

Using Map Projections and Datasets 297

Using Map Projections and Datasets
This section is not intended to teach mapping concepts, but rather to highlight some
of the concepts that are central to using the PV-WAVE mapping routines.

For more information on mapping projections and in-depth discussions of algo-
rithms and uses of the projections PV-WAVE generates, refer to the following
publications:

Map Projections Used by the U.S. Geological Survey, Geological Survey
Bulletin 1532, John P. Snyder, Second Edition, 1983.

An Album of Map Projections, U.S. Geological Survey Professional Papers
1453, John P. Snyder and Philip M. Voxland, 1989.

Both are available from:

USGS ESIC: Open File Report Sales
Box 25286, Building 810
Denver Federal Center
Denver, CO USA 80225
Phone: (303) 236-7476
FAX: (303) 236-4031

What Are Map Projections?

A central problem facing cartographers for centuries was how to represent the fea-
tures of a spherical globe on a flat map. Many methods have been devised for
“flattening” the globe onto a map, and these methods are called map projections.
PV-WAVE can generate 17 different types of projections. It is also possible for you
to design your own algorithms and use them in PV-WAVE.

A map projection transforms spherical coordinates into two-dimensional X-Y
coordinates. The spherical coordinates of the globe are defined by lines of longi-
tude and latitude.

Longitude is the angle in degrees east or west of the prime meridian passing
through Greenwich, England, and latitude is the angle in degrees north or south of
the Equator.

298 PV-WAVE User’s Guide

Types of Projections

Each different map projection preserves different characteristics of the globe it rep-
resents. The characteristics preserved by four important projection types are
described below:

• Equal Area Projection — Preserves the relative area of features at the
expense of distortions in shape, angles, and scale. In an equal area projection,
a coin placed on any part of the map will cover the same area.

• Conformal Projection — Preserves the shape of small features correctly, but
large feature are distorted. Most large scale maps use some type of conformal
projection.

• Equidistant Projection — Preserves the scale or measured distance between
certain points and all other points on the map. This allows true distances to be
measured using a ruler.

• Azimuthal Projection — Preserves local direction, or the angle between one
point and other points on the map.

Projections can exhibit one or more of the above properties, thus there are azi-
muthal equidistant and azimuthal equal-area projections. There are subclasses of
these projections which preserve more specialized characteristics. On Mercator
projections all rhumb lines (lines of constant direction) are shown as straight lines,
and on Stereographic projections all small circles (e.g. lines of latitude) and great
circles (intersection of a plane passing through the center of the sphere and the sur-
face of the sphere) are shown as circles on the map.

In order to achieve some of the above properties, map projections are usually con-
structed in such a way that the surface of a sphere is “projected” or mapped to either
a cylinder, cone, or plane (referred to as azimuthal). Thus the projection may refer
to “Conic”, “Cylindrical”, or “Azimuthal” in its name to identify the construction
method.

Map Projections Available in PV-WAVE
PV-WAVE can generate the following map projections:

• Equidistant Cylindrical

• Lambert Conformal Conic

• Cylindrical Mercator

• Sinusoidal

• Albers Equal-Area Conic

• Polyconic

• Polar Stereographic

Using Map Projections and Datasets 299

• Oblique Stereographic

• Oblique Orthographical

• Polar Orthographical

• Oblique Azimuthal Equidistant Oblique

• Polar Azimuthal Equidistant Oblique

• Polar Azimuthal Equal-Area

• Oblique Azimuthal Equal-Area

• Transverse Mercator

• Mollweide (Ellipsoid)

• Satellite (3D mapping onto a sphere)

• User-defined projection

What Are Map Datasets?
In PV-WAVE a map dataset is a set of polylines (a series of connected points) or
polygons (points which describe a filled area). These polylines or polygons can
have a number of classification attributes associated with them which aid in
selecting features to be plotted. These attributes allow the desired polylines or
polygons for a map to be selected based on the area being mapped and the features
you want to plot.

Two datasets are included with PV-WAVE for creating world and US maps: The
World Databank II dataset for global maps, and a dataset based on the USGS
Digital Line Graph data for U.S. maps. In addition, a USGS database of U.S. map
information is included with PV-WAVE.

The World Databank II Dataset

World Databank II is the default dataset used by the PV-WAVE MAP procedure.
The World Databank II dataset is a subset of a public domain dataset provided by
the U.S. Department of Commerce, merged with updated country data from the
National Imagery and Mapping Agency (NIMA). All of the attribute information
from the original dataset is provided in PV-WAVE, but the resolution has been
reduced by sampling the polylines in order to make the dataset manageable both in
terms of disk space and memory requirements.

The subsetted dataset contains approximately 300,000 points, which provides good
resolution for most applications. The dataset consists of a series of polylines, and
each polyline has attributes associated with it. You can subset a map by specifying
these attributes with the Select keyword (to the MAP procedure). The attributes
include coastlines/islands/lakes, rivers, international boundaries, and U.S. state
boundaries.

300 PV-WAVE User’s Guide

The USGS Digital Line Graph Dataset

The USGS Digital Line Graph Dataset is composed of polygons that draw U.S.
states and counties. The polygons allow you to create either line maps or maps
filled with color. The Select keyword (to the MAP procedure) lets you plot specific
states and counties. This dataset can be selected by using the keyword Data =
’usgs_db’ with the MAP procedure.

The USGS Name Database

The USGS_NAMES function queries a built-in database of populated places in the
United States. This database lets you find the longitude and latitude and for most
cities and towns in the U.S. In addition, you can use the database to determine the
FIPS codes for states and counties. See the PV-WAVE Reference for details on this
procedure.

Reading Other Map Datasets Into PV-WAVE

The World Databank II and USGS Digital Line Graph datasets are provided with
PV-WAVE, as are procedures used to read them into PV-WAVE. To read another
dataset other than World Databank II and USGS Digital Line Graph Dataset, you
must write a procedure tailored to read that dataset. For more information, see
Accessing Other Map Datasets on page 315.

Creating and Customizing Maps
This section explains how to create maps in PV-WAVE using the MAP procedure
and its keywords. In addition, procedures for annotating maps, creating map over-
lays, and combining maps and images are discussed.

Plotting a World Map

The MAP procedure, by default, displays a world coastline map taken from the
World Databank II dataset.

For example, the following MAP call produces the map shown in Figure 12-2.

TEK_COLOR

MAP, Range = [-180, -90, 180, 90], $
Select = {,GROUP:[’cil’,’bdy’,’pby’,$
’riv’]}, Color = -1, /Gridlines, $
Gridstyle = 1, Gridcolor = 15

Creating and Customizing Maps 301

Figure 12-2 An equidistant cylindrical projection plotted from World Databank II data.
Coastlines, islands, lakes, political boundaries, and rivers are plotted, as well as longitude/
latitude gridlines.

In this example, keywords are used to specify the range of data, select the map fea-
tures to plot, create longitude/latitude gridlines, and add color. MAP accepts some
additional optional keywords. Some of the keywords are discussed in the following
sections. For a complete list and description of the keywords, see the description of
MAP in the PV-WAVE Reference.

The Data keyword is used to specify the map dataset to plot. The World Databank
II dataset (the default) and the USGS Digital Line Graph Dataset are provided with
PV-WAVE. You can also write custom procedures to read other map datasets. For
example:
MAP, Data = ’usgs_db’, Range = $

[-125, 25,-70,55], /Gridlines, /Axes, Gridstyle = 2

; Plots a U.S. map using data from the USGS Digital Line
; Graph Dataset. The Range keyword is used to specify the
; map region in longitude/latitude coordinates.

MAP, Data = ’mydbase’

; Plots a map using data from a dataset that you have supplied and
; for which a custom read procedure has been written.

NOTE By default, MAP plots vector data. That is, it works like the PLOT
command and uses some of the same keywords as PLOT. If you specify the Filled
keyword to MAP, then MAP works like POLYFILL and uses some of the same
keywords as POLYFILL. The MAP procedure can only produce a “filled” map if
the dataset it reads provides polygon data. Note that the World Databank II dataset
does not provide polygon data, but the USGS Digital Line Graph Dataset does.

302 PV-WAVE User’s Guide

Specifying a Map Projection

The Projection keyword for the MAP procedure lets you specify a projection for
the map that is drawn. PV-WAVE provides several built-in projections, but you can
also add your own projection algorithm.

For example:

MAP, Projection = 3

; Create a Cylindrical Mercator projection using the
; World Databank II data.

MAP, User = ’myprojection’

; Use a projection algorithm supplied by a user. The projection name,
; “myprojection”, is the name of a PV-WAVE routine in which the
; projection is defined.

For information on adding your own projection algorithm to PV-WAVE, see
Defining Your Own Projections on page 318.

To specify a projection, set the Projection keyword to the corresponding map pro-
jection index number. The map projections and their index numbers are:

Map Projections in PV-WAVE

Index Projection Index Projection

1 Equidistant Cylindrical 11 Oblique Azimuthal
Equidistant Oblique

2 Lambert Conformal Conic 12 Polar Azimuthal
Equidistant Oblique

3 Cylindrical Mercator 13 Polar Azimuthal Equal-Area

4 Sinusoidal 14 Oblique Azimuthal Equal-Area

5 Albers Equal-Area Conic 15 Transverse Mercator

6 Polyconic 16 Mollweide (Ellipsoid)

7 Polar Stereographic 99 Satellite (3D mapping onto a sphere)

8 Oblique Stereographic –1 User-defined projection (automatically set if the
User keyword is supplied)

9 Oblique Orthographical 0 No projection

10 Polar Orthographical

Creating and Customizing Maps 303

Subsetting the Map Dataset

This section discusses the Select, Range, Zoom, Center, and Resolution keywords.
These MAP keywords are used to subset the map dataset in different ways. For
more information on subsetting, see How to Optimize Your Mapping Application
on page 311.

Selecting Map Attributes

Use the MAP Select keyword to specify the type(s) of map data (attributes) to plot.

To use the Select keyword, you need to know the special attributes (e.g., cities,
political boundaries, rivers, continents) that are defined in the dataset. For example,
the World Databank II includes coastlines, international boundaries, state
boundaries, and rivers.

The following MAP command uses the Select keyword to specify that “CIL”
(coastline, island, and lake) and “RIV” (river) data be plotted.

MAP, SELECT = {, GROUP: [’CIL’, ’RIV’]}

NOTE The Select keyword takes an unnamed structure as its input. For
information on unnamed structures, refer to the PV-WAVE Programmer’s Guide.

Specifying the Map Limits

There are two ways to specify the portion of a map dataset to display. You can use
the Range keyword or the Zoom and Center keywords.

Using Range Keyword

To use the Range keyword, you need to know the extent of the map data (its range
in longitude and latitude). The World Databank II dataset, for example, is global in
extent.

The Range keyword specifies the range of longitude and latitude values to be dis-
played. Range requires a four-element array containing the minimum longitude,
minimum latitude, maximum longitude, and maximum latitude values to be
plotted.

For example, the following MAP command uses the World Databank II data and
plots the world map from between –90 and 90 degrees longitude and between –45
and 45 degrees latitude.

MAP, RANGE = [-90, -45, 90, 45]

304 PV-WAVE User’s Guide

Using Zoom and Center

For some applications the Zoom and Center keywords might be more convenient
to use than the Range keyword to specify map limits.

To “zoom” in on a point on a map, use the Zoom and Center keywords. Center
specifies a two-element array containing the longitude and latitude of the point to
zoom in on. The Zoom keyword specifies a “zoom factor”. A zoom factor of 1 (the
default) plots the entire globe. A zoom factor of 2 plots one-half of the globe, and
so on.

For example, the following MAP call produces the plot shown in Figure 12-3:

MAP, Center = [-90, 30], Zoom = 2, $
/Gridlines, Gridstyle = 1

Figure 12-3 A partial world map plotted using the Center and Zoom keywords.

Plotting Great Circles, Straight Lines, and Text

Use the MAP_PLOTS procedure to draw either great circles or arbitrary straight
lines on a map. MAP_PLOTS can also be used to compute geographical distances.
To annotate a map, use the MAP_XYOUTS procedure.

Drawing Great Circles

A great circle is the intersection between a plane passing through the center of a
sphere and the surface of a sphere. On a map, great circle lines represent the short-

Creating and Customizing Maps 305

est distance between two geographical points. On most projections, great circles
appear as curved lines.

By default, MAP_PLOTS computes the great circle between two points on a map
projection and draws the great circle line.

Drawing Arbitrary Straight Lines

Use MAP_PLOTS with the NoCircle keyword to draw straight lines between two
points on a map. Straight lines can be used to highlight or draw attention to a par-
ticular feature. The lines drawn are not great circle lines.

Calculating Distances

The Distance keyword to MAP_PLOTS returns in a named variable the actual dis-
tance in miles or kilometers between points. If two points are plotted, the distance
is returned as a scalar; if multiple points are plotted, then an array of distance values
is returned.

Adding Text to Maps

The MAP_XYOUTS procedure lets you position text on a map at specified longi-
tude and latitude coordinates. This routine takes as parameters a point, specified as
a longitude and latitude coordinate, and a text string. Keywords let you modify the
text size, thickness, color, and alignment.

Example

The following example uses MAP, MAP_PLOTS and MAP_XYOUTS to plot a
great circle between two cities (Boulder, Colorado and London, England) and label
the cities. The distance between the cities is also calculated and placed into a text
label. (The map produced by this code is shown in Figure 12-4 on page 306.)

MAP, RANGE = [-150, 30, 30, 70], /Axes, $
/GridLines, GridColor = 10, GridStyle = 1

; Plot the map.

MAP_PLOTS, [-105.3, -0.1], [40.0, 51.5],$
Distance = d, /Miles, Color = 5, $
Psym = -2, Thick = 2

; Plot a great circle between two points. Return the
; distance between the points with the Distance keyword.

MAP_XYOUTS, -103.0, 38.0, ’Boulder’, $
Color = 5, Charsize = 1.5, Charthick = 2

; Label one city.

306 PV-WAVE User’s Guide

MAP_XYOUTS, 2.0, 49.0, ’London’, $
Color = 5, Charsize = 1.5, Charthick = 2

; Label the other city.

MAP_XYOUTS, -65.0, 42.0, ’Distance =’ + $
STRCOMPRESS(STRING(d(0), $
Format = ’(I5)’))+ ’ miles’, $
Color = 5, Charsize = 1.5

; Add a text string containing the distance.

Figure 12-4 A map projection that shows the great circle arc and labels the distance
between Boulder, Colorado and London, England.

Adding an Image Under the Map

Use the Image keyword to specify the name of an image (2D array) to be drawn
under the map. The image is warped to fill the entire area specified by the Range
keyword.

The following example warps a 2D array of global elevation data onto a sinusoidal
map projection of the earth. The map produced by this example code is shown in
Figure 12-5.

file = ’$VNI_DIR/mapping-1_1/data/’+’earth_elev.dat’

; (UNIX only) Get the path/filename of file containing
; a 2D array of global elevation data.

file = ’VNI_DIR:[MAPPING-1_1.DATA]’ + ’earth_elev.dat’

Creating and Customizing Maps 307

; (OpenVMS only) Get the path/filename of the global elevation data.

elev = FLTARR(720, 360)

; Create array to hold image.
OPENR, 1, file, /Xdr

; Open and read the image data file into the array.
READU, 1, elev

CLOSE, 1

WINDOW, Xsize=720, Ysize=360, Colors=128

TVLCT, 150, 150, 150, 63

red = BYTARR(63)

grn = BYTSCL(FINDGEN(63)^2.0)

blu = BYTSCL((FINDGEN(63)))

TVLCT, red, grn, blu, 0

TVLCT, 255, 255, 255, 127

; Define and load a colortable.
MAP, Projection = 4, Range = $

[-180,-90,180,90], Image = elev

; Reference the image array with the Image keyword to warp
; the image around the map projection.

Figure 12-5 A 2D array of global elevation data is warped around a sinusoidal map projec-
tion of the globe. This map data is displayed by PV-WAVE from the World Databank II
dataset.

308 PV-WAVE User’s Guide

Adding Contour Lines

MAP_CONTOUR lets you overlay contours on a map. This routine works like the
regular CONTOUR procedure in PV-WAVE, except that MAP_CONTOUR
assumes that the X and Y vectors specified or created by default are specified in
terms of longitude and latitude coordinates.

When plotted, the contour data is projected so that the contour lines accurately
describe features on the surface of the globe.

The following example plots contour data on a map. The result is shown in Figure
12-6.

file = ’$VNI_DIR/mapping-1_1/data/’+$
’earth_elev.dat’

; (UNIX only) Get the path of file containing 2D array of
; global elevations.

file = ’VNI_DIR:[MAPPING-1_1.DATA]’ +$
’earth_elev.dat’

; (OpenVMS only) Get the path of the global elevation data.

file = ’%VNI_DIR%\mapping-1_1\data\’+$
’earth_elev.dat’

; (Windows only) Get the path of file containing 2D array of
; global elevations.

elev = FLTARR(720, 360)

; Create an array to hold the image.
OPENR, 1, file, /Xdr

; Open and read the image data file into the array.
READU, 1, elev

CLOSE, 1

water = BYTSCL(elev, Max = 0.0, Top = 63)

land = BYTSCL(elev, Min = 0.0, Top = 63)

elev = water + land

elev = REBIN(elev, 360, 180)

DATA = FLOAT(elev(-150+180:30+180, 30+90:70+90))

; Subset the array of elevation data. The elevation dataset
; contains an elevation for each degree of longitude and
; latitude, from –180 to 180 degrees longitude and
; from –90 to 90 degrees latitude. The array expressions in
; this command subset the data corresponding to the range
; of data used in the MAP procedure call.

MAP, Projection = 4, Range = $
[-150, 30, 30, 70], Thick = 2

TEK_COLOR

Creating and Customizing Maps 309

MAP_CONTOUR, DATA, C_Colors = $
[2,8,16,18,20,4], Levels = [20,30,35,40,50]

Figure 12-6 Contour lines are plotted over a map projection.

In addition to line plot overlays, the Fill and Pattern keywords allow contours to be
filled in the same way that POLYCONTOUR is used to fill contour plots. The same
cautions associated with POLYCONTOUR apply, in that all contour lines must be
closed. This is usually accomplished by padding the data with zeros or some other
value outside the range of the data. For an example of this technique, see the POLY-
CONTOUR procedure in the PV-WAVE Reference.

NOTE MAP_CONTOUR with the Fill keyword is not supported for projection 99
(Satellite), but good results can be obtained by creating a two-dimensional image
with CONTOUR and POLYCONTOUR and then using the Image keyword with
MAP to wrap this image onto the globe.

Adding Vector Lines

MAP_VELOVECT creates two-dimensional velocity vector plots. It works just
like the PV-WAVE VELOVECT procedure, except that MAP_VELOVECT takes
longitude and latitude coordinates as input. When the vector lines are plotted, the
current map projection is taken into account so that the vector lines are depicted
accurately on the map, as shown in Figure 12-7.

u = fltarr(20, 20)

 v = fltarr(20, 20)

310 PV-WAVE User’s Guide

 FOR j = 0, 19 DO BEGIN

 FOR i = 0, 19 DO BEGIN

 x = 0.05 * float(i)

 z = 0.05 * float(j)

 u(i, j) = -sin(!Pi*x) * cos(!Pi*z)

 v(i, j) = cos(!Pi*x) * sin(!Pi*z)

 ENDFOR

 ENDFOR

MAP, Projection = 4, Range = [-150, 30, 30, 70]

MAP_VELOVECT, u, v, Color = 5

Figure 12-7 Vector lines are added to a map projection.

Creating Filled Maps

The MAP_POLYFILL routine provides essentially the same functionality as the
POLYFILL routine for plotting filled polygons, except that the data provided is
assumed to be longitude/latitude data which will be projected before being plotted.
Standard POLYFILL keywords such as Color, Pattern, Fill_Pattern, Line_Fill,
Linestyle, Thick, Psym, Spacing and Symsize can be used to specify the character-
istics of the polygon to be plotted.

NOTE MAP_POLYFILL cannot be used with the Satellite (3D Mapping onto a
Sphere) projection.

How to Optimize Your Mapping Application 311

How to Optimize Your Mapping Application
This section describes several methods for improving the performance of your
mapping application. These methods will help you to design a mapping application
that performs well at an acceptable resolution.

In general, map data is processed and displayed in four stages in PV-WAVE. When
considering how to improve the performance of a mapping application, it is helpful
to keep in mind these four stages, illustrated in Figure 12-8.

Figure 12-8 Basic stages required to generate a map in PV-WAVE.

This section focuses on performance improvements that can be gained in stages 1
and 2. Stage 3 cannot be improved substantially, because it depends on array oper-
ations, which are already greatly optimized by PV-WAVE.

The performance of stage 4, plotting the data, depends largely on the size of the
dataset being plotted. Reducing the size of the dataset is the primary focus of this
section.

A summary of methods for improving the speed at which PV-WAVE reads and dis-
plays map data is shown in the following table. More details are provided in this
section.

Methods for Optimizing Mapping Applications

Optimization Method Advantages Disadvantages

Subsetting data with
MAP keywords Select,
Range, Center, and
Zoom.

Keywords are easy to use and
accessible to all PV-WAVE
users.
Allow you to display only those
portions of the map that are of
interest.
Reduces the overall amount of
data to be plotted.

Subsetting can be a slow
process for very large
datasets.
May not be sufficient if a
large portion of the map
must be displayed at
once.

Read the Subset the
Dataset

Project the
Dataset

Plot the
DatasetDataset

1 2 3 4

312 PV-WAVE User’s Guide

Subsetting Data with MAP Procedure Keywords

Perhaps the easiest way to improve the performance of a mapping application is to
subset the map dataset using keywords provided with the MAP procedure. These
keywords are passed directly to the procedure that reads the map dataset, so that
the data is subsetted before it is read into memory.

For additional information on the keywords described below, see the description of
the MAP procedure in the PV-WAVE Reference. See also Subsetting the Map
Dataset on page 303.

Reduce the number of
map data points plot-
ted with the Resolution
keyword.

Useful for wide-area maps
where fine detail may not be nec-
essary.
Reduces the overall amount of
data to be plotted.

Cannot be used with the
usgs_db dataset.

Use the File_Path
keyword to save a
subsetted dataset in a
binary file that can be
read and displayed
quickly with the
Read_Path keyword.

Subsequent calls to MAP can
skip the steps of reading and
subsetting the map data.
Provides excellent performance
for applications that make calls
to the MAP procedure to plot
and replot the same dataset.

Reduces the
detail/accuracy of the
original map.

Use DEVICE, /Copy
or TVRD to create an
image of a basemap
that can be rapidly re-
displayed.

Provides excellent performance. Resolution is limited to
the resolution of the win-
dow into which the data
is copied.

Write a C or FOR-
TRAN procedure to
read and subset a large
map dataset before
placing the data in
memory.

Useful for handling user-sup-
plied datasets that are too large
to read into memory in one
chunk.
PV-WAVE can access the C or
FORTRAN procedure via
LINKNLOAD.
Reduces the overall amount of
data to be plotted.

Only useful for C or
FORTRAN program-
mers. Some knowledge
of PV-WAVE connectiv-
ity features is also
required.
Reduces the
detail/accuracy of the
original map.

Methods for Optimizing Mapping Applications (Continued)

Optimization Method Advantages Disadvantages

How to Optimize Your Mapping Application 313

Subsetting with the Select Keyword

The Select keyword reduces the amount of data returned to the MAP procedure. It
lets you specify only the map features that you want to plot from the dataset. Select-
ing a subset of the available map features can improve performance significantly.

The Select keyword can be used to subset the world_db and usgs_db datasets.

Subsetting with Range, Zoom, and Center Keywords

These keywords let you subset a map dataset by specifying a range of data to plot.
In other words, only the data that falls within a selected area is returned by the MAP
procedure. With the Range keyword, you specify an area to plot within a range of
longitude and latitude values. The Zoom and Center keywords allow you display
an area surrounding a specified point.

Subsetting with the Resolution Keyword

The Resolution keyword reduces (samples) the number of data points that are plot-
ted, thereby reducing the map resolution. This keyword can be useful when plotting
a wide area map where the full resolution of the database might not be discernible
given the resolution of the output device.

This keyword can only be used with the world_db dataset.

Use File_Path and Read_Path Keywords to Avoid Re-read-
ing Data

As noted previously, the procedure that reads the dataset (e.g., world_db or
usgs_db) is responsible for performing most of the subsetting. However, each
time the MAP procedure is called, the map-reading procedure is called, and the
process of subsetting the data is repeated.

This ensures that the full resolution of these datasets can be accessed when needed,
but can slow down performance when the same data subset must be plotted
repeatedly.

The File_Path and Read_Path keywords to the MAP procedure store a subsetted
dataset in a binary file and then read it for subsequent calls to MAP. The Read_Path
keyword restores the data quickly without calling the dataset-reading procedure.

Thus the mapping process is reduced to reading a small dataset, projecting it, and
plotting it. This method provides the optimal performance and the best resolution
for large datasets. The demonstration routines for mapping use this technique to

314 PV-WAVE User’s Guide

optimize their speed of execution, and the same technique can be used in your own
applications. The demonstration routines are in:

(UNIX) $VNI_DIR/mapping-1_1/demo

(OpenVMS) VNI_DIR:[MAPPING-1_1.DEMO]

(Windows) %VNI_DIR\mapping-1_1\demo

Where VNI_DIR is the main Visual Numerics installation directory.

Creating a Basemap Image

There are other techniques, not strictly related to mapping, which can be used in
some circumstances to further increase the performance of drawing a basemap. For
instance, if a basemap needs to be redrawn quickly many times in an X Window
System environment, the command:

DEVICE, Copy

can be used to rapidly update a window from a copy held in another window. The
following example demonstrates this, and can be used to update a map in a fraction
of a second, but with the limitation that the resolution is limited to that of the win-
dow in which the map is created.

WINDOW, 1, Xsize = 600, Ysize = 400, /Pixmap

; Create an invisible pixmap window.

MAP, Center = [10, 50], Zoom = 7

; Draw a map of Europe.

WINDOW, 0, Xsize = 600, Ysize = 400

; Create a visible window of the same size.

DEVICE, Copy = [0, 0, 600, 400, 0, 0, 1]

; Copy the contents of the pixmap window to the visible window.
; (This can be repeated indefinitely.)

It is also possible to use the TVRD command to copy the contents of a window con-
taining a basemap into a byte array variable. Saving this variable in a file allows the
basemap to be restored by simply reading the variable and redisplaying the image,
as in this example:

WINDOW, Xsize = 600, Ysize = 400

; Create a window.

MAP, Center = [10, 50], Zoom = 7

; Draw a map of Europe.

basemap = TVRD(0,0, 600, 400)

; Copy the contents of the window to the basemap variable.

Accessing Other Map Datasets 315

SAVE, basemap, File = ’mybasemap.dat’

; Save the basemap variable.

Then to restore the basemap later:

RESTORE, File = ’mybasemap.dat’

; Restore the basemap image.

WINDOW, 1, Xsize = 600, Ysize = 400

; Create a window.

TV, basemap

; Redisplay the basemap image.

Optimized Data Reading

Two procedures designed to read map datasets are provided with PV-WAVE.
These procedures,world_db andusgs_db, read map data directly into memory
whenever they are called.

If you supply your own dataset (that is, a dataset other than the World Databank II
or USGS datasets) and write a procedure to read it, it is possible that it will be too
large to read the entire dataset into memory at once.

In this case, a C or FORTRAN program can be written to read and subset the data
prior to placing it in memory. Using connectivity features, such as LINKNLOAD,
a PV-WAVE procedure can be written to call the C or FORTRAN program in a
mapping application. This method can provide the best access speed for large
datasets, and can be useful when you need to perform a lot of testing to determine
how to subset the data correctly.

See Accessing Other Map Datasets on page 315 for information on writing a pro-
cedure to read a dataset.

Accessing Other Map Datasets
Two map datasets are included with PV-WAVE: the World Databank II dataset and
the USGS Digital Line Graph Dataset. These built-in map datasets are subsets of
the actual datasets, and are included to provide relatively fast and efficient access
to map data while still maintaining adequate resolution when a small area is
plotted.

Two procedures are provided to read these datasets: usgs_db.pro and
world_db.pro. These procedures are called by the MAP procedure.

316 PV-WAVE User’s Guide

A procedure called ascii_db.pro is also provided in the mapping library to
help you read your own map datasets that are in ASCII format. You can use the
ascii_db procedure as a template for reading a user-defined dataset.

If you use the MAP procedure with the Data keyword set to ascii_db, use the
Select keyword to specify the name of the file containing the ASCII data. The
ASCII file containing the data must conform to the following format:

• Two columns of numbers, either comma or space separated.

• The beginning of each polyline or polygon indicated by a record with “999” in
the first column and the color in the second column.

• This record is followed by any number of records containing pairs of coordi-
nates for the X and Y or longitude and latitude.

Writing a Procedure to Read a Map Dataset
To use any map dataset, PV-WAVE must be given specific information about the
dataset. This information is placed in a procedure file that is executed when the
MAP procedure is called with the Data keyword.

A procedure for reading a map dataset reads and subsets the map dataset using
attribute selections of the data. A map dataset procedure must contain the following
four positional parameters:

• data — A 2-by-n floating point array of longitude/latitude points (in degrees)
returned from the dataset.

• index — A 2-by-m long array containing the starting and ending indices of
each polyline or polygon in the map dataset.

• select — A variable passed from the MAP procedure via its Select keyword.
This passed variable can be an unnamed structure containing as tag fields the
names of section criteria recognized by the map dataset (such as cities, coun-
tries, rivers). The use of this variable is entirely defined within the map dataset
procedure.

• resolution — A variable containing the number of points to skip in a large
dataset. A higher resolution value improves performance at the expense of map
detail. This variable must be present in the user defined procedure, but its use
is optional and can be ignored if it is not needed.

Another way to control the size of the dataset returned by the dataset-reading pro-
cedure is to use the !Map.X.Range and !Map.Y.Range system variables. These
system variables contain minimum and maximum longitude and latitude values for
the current plot, and can be used to subset the dataset and reduce the size of the data
array returned.

Accessing Other Map Datasets 317

NOTE When the MAP procedure is called, a new system variable !Map is created
to contain parameters used by the mapping routines. These parameters are also
used in user defined projections and user-defined map dataset procedures. For
information on the fields of this system variable, refer to the file map.pro in:
(UNIX) $VNI_DIR/mapping-1_1/lib/map.pro

(OpenVMS) VNI_DIR:[MAPPING-1_1.LIB]MAP.PRO

(Windows) %VNI_DIR%\mapping-1_1\lib\map.pro

The dataset-reading procedure returns the data to be projected and plotted based on
the selection criteria, area being plotted, and optionally the resolution desired. The
procedure can read the entire map into a variable the first time it is called and then
subset the data directly from memory, as is done for the World Databank II and
USGS Digital Line Graph Dataset procedures. Or, the procedure can read the
dataset from disk each time the procedure is called, which would be appropriate for
very large datasets.

Example Programs Are Provided
For more information on how to create a procedure to read a map dataset, look at
the following procedures that are provided with PV-WAVE:
(UNIX) $VNI_DIR/mapping-1_1/lib/world_db.pro

(OpenVMS) VNI_DIR:[MAPPING-1_1.LIB]world_db.pro

(Windows) %VNI_DIR%\mapping-1_1\lib\world_db.pro

(UNIX) $VNI_DIR/mapping-1_1/lib/usgs_db.pro

(OpenVMS) VNI_DIR:[MAPPING-1_1.LIB]usgs_db.pro

(Windows) %VNI_DIR%\mapping-1_1\lib\usgs_db.pro

(UNIX) $VNI_DIR/mapping-1_1/lib/ascii_db.pro

(OpenVMS) VNI_DIR:[MAPPING-1_1.LIB]ascii_db.pro

(Windows) %VNI_DIR%\mapping-1_1\lib\ascii_db.pro

Use these programs to guide you in writing your own procedure to read a dataset.

TIP To convert data stored as degrees, minutes, and seconds to a single floating
point value for use in the mapping routines, the formula is:
value = degrees + minutes / 60.0 + seconds / 3600.0

318 PV-WAVE User’s Guide

Defining Your Own Projections
You can specify a new projection by creating a PV-WAVE procedure defining the
projection algorithm. Then, call MAP and specify the name of your projection rou-
tine with the User keyword. The projection routine is passed a single parameter,
values, a 2-by-n floating point array of longitude/latitude values to be transformed
and returned in the same array.

A second parameter, index, must also be included, but its use is optional. On return
index can contain a vector of integers specifying the indices in the values array to
plot. If index is not used, it is assumed that all projected points in values are valid.

In addition a keyword parameter Reverse must be defined so that if the procedure
is called with Reverse, the data can be passed through a reverse transformation
from two-dimensional data coordinates to longitude/latitude values. The system
variables !Map.Center and !Map.Parameters also may be used in a user defined
procedure to supply other necessary information for the projection algorithm.

NOTE When the MAP procedure is called, a new system variable !Map is created
to contain parameters used by the mapping routines. These parameters are also
used in user defined projections and user-defined map dataset procedures. For
information on the fields of this system variable, refer to the file map.pro in:
(UNIX) $VNI_DIR/mapping-1_1/lib

(OpenVMS) VNI_DIR:[MAPPING-1_1.LIB]

(Windows) %VNI_DIR%\mapping-1_1\lib

Example

An example user-defined projection is provided in:
(UNIX) $VNI_DIR/mapping-1_1/demo/userproj.pro

(OpenVMS) VNI_DIR:[MAPPING-1_1.DEMO]userproj.pro

(Windows) %VNI_DIR%\apping-1_1\demo\userproj.pro

This example projection program produces a tilted perspective (modified azi-
muthal) projection. Use this program to guide you in writing your own projection
procedures.

Here is an example map produced with the “user-defined” projection
userproj.pro:

MAP, Center=[-74, 41], Zoom = 2, /Gridlines, $
Gridstyle = 1, Gridcolor = 15, $
User = ’userproj’, Parameters = [10.0, 200.0, 20.0]

Creating Interactive Map Applications 319

Figure 12-9 A user-defined projection produced this tilted view of the globe.

Creating Interactive Map Applications
The MAP_REVERSE procedure converts the X-Y coordinate output from routines
like CURSOR and WtPointer into longitude and latitude coordinates. CURSOR
and WtPointer return the coordinates of the cursor or pointer after a mouse click.

NOTE MAP_REVERSE cannot be used with the Satellite (3D Mapping onto a
Sphere) projection.

TIP If you are developing an interactive widget-based mapping application, look
at the demonstration program map_test.pro in the directory:
(UNIX) $VNI_DIR/mapping-1_1/demo

(OpenVMS) VNI_DIR:[MAPPING-1_1.DEMO]

(Windows) %VNI_DIR%\mapping-1_1\demo

Where VNI_DIR is the main Visual Numerics installation directory.

This program uses PV-WAVE Widgets to create an interactive mapping demon-
stration. You can copy this code and use it as a template for creating your own
mapping applications. To run the demonstration, move to the demo directory using
the PV-WAVE CD command, then type map_test at the PV-WAVE prompt.

320 PV-WAVE User’s Guide

321

CHAPTER

13

PV-WAVE on the World Wide Web
PV-WAVE provides a collection of features that allow you to process and present
data across the Internet. You can also use the new functionality to work efficiently
across private intranets.

PV-WAVE’s Web-enabling technology allows you to:

• Develop HTML and VRML files.

• Open remote files for PV-WAVE processing.

• Use your local PV-WAVE installation as a helper application.

• Use a remote (server-side) PV-WAVE installation.

HTML, VRML, and file handling capabilities are part of the standard library and
documented in the PV-WAVE Reference. Many of these routines and all of the
other web-enabling features are also outlined and demonstrated in the following
directory:

(UNIX) <wavedir>/demo/web

(OpenVMS) <wavedir>:[DEMO.web]

(Windows) <wavedir>\demo\web

where <wavedir> is the main PV-WAVE directory.

Standard Library Web-Enabling Routines
PV-WAVE’s standard library contains Hypertext Markup Language (HTML) rou-
tines and Virtual Reality Modeling Language (VRML) routines. (For detailed

322 PV-WAVE User’s Guide

descriptions, see the PV-WAVE Reference.) Plus, the following routines have been
added to facilitate file input and output:

• OPENURL

• READ_XBM

• WRITE_XBM

All of these features — previously available only in the user library or from the
Visual Numerics Web site — are now fully supported and integrated into the
product.

The PV-WAVE HTML routines allow you to create World Wide Web documents.
Developing HTML directly with PV-WAVE allows you to put the results of your
data visualization and analysis out on the Internet for others to see. Along with
graphical representations and formatted reports of your data, HTML makes it con-
venient for you to describe and highlight important information.

The VRML routines allow you to describe three-dimensional representations of
your data that can be viewed with a VRML-enabled browser.

Several other routines are also useful for processing or producing graphical mate-
rial for usage across the Internet:

• IMAGE_CREATE

• IMAGE_READ

• IMAGE_WRITE

PV-WAVE as a Helper Application
From a Web browser, PV-WAVE can be set up as a helper application, allowing
you to open virtually any PV-WAVE procedure anywhere on the Internet and exe-
cute it on your system.

For information on creating a helper application, see the README file in:

(UNIX) <wavedir>/demo/web/helper-app

(Windows) <wavedir>\demo\web\helper-app

where <wavedir> is the main PV-WAVE directory.

OpenVMS USERS This functionality is not available on OpenVMS.

Using PV-WAVE Remotely with CGI 323

Using PV-WAVE Remotely with CGI
You can also use PV-WAVE as a remote Web server in conjunction with the Com-
mon Gateway Interface (CGI). For an example of using PV-WAVE on a remote
Web server, look in the directory:

(UNIX) <wavedir>/demo/web/cgi

(Windows) <wavedir>\demo\web\cgi

where <wavedir> is the main PV-WAVE directory.

OpenVMS USERS This functionality is not available on OpenVMS.

The CGI demonstration shows how you can use CGI to invoke PV-WAVE on a
server. For more information, see the REAME in the above directory.

Another practical example of combining PV-WAVE with CGI is contained in the
directory:

(UNIX) <wavedir>/demo/web/weather

(Windows) <wavedir>\demo\web\weather

where <wavedir> is the main PV-WAVE directory.

This example demonstrates a means by which a Java applet can retrieve data from
a remote data source, analyze that data using PV-WAVE, and display it in a Web
browser.

This approach has the advantage of allowing remote users access to PV-WAVE’s
visualization and analysis technology in conjunction with remotely located, fre-
quently updated data sources — all while taking advantage of the computational
power that resides on the server.

NOTE The CGI demonstrations require a working knowledge of CGI. Visual
Numerics does not support CGI and takes no responsibility for individual CGI
configurations.

324 PV-WAVE User’s Guide

 1

User’s Guide Index

A
aborting

See also exiting
plots 46
PV-WAVE 12–13

annotation
additional formatting commands 265
map 305
plots 51
positioning text with cursor 79
title of plot 47
with hardware fonts 259
with software fonts 262, 270

arrays
See also subsetting
contouring 2D 82
decrease sampling 86
reading

from display 124
arrow keys, command recall 33
attributes

of window 26
automated demonstration 6
axes

adding to plot 65–66
additional 65
annotation of 47
coordinate systems for 65, 66
date/time 50, 201, 219
exchange of 111
logarithmic 63
positioning of 64
range of 48
scaling of 47, 63
styles of 47
suppressing 66

azimuthal map projection 298

B
bandpass filters 142–143
bar charts 56–58
bilinear interpolation 123, 147
BUILD_TABLE function 239
Butterworth filters 142–143
BYTSCL function 134

C
C_EDIT procedure 294
CENTER_VIEW procedure 179
CGI 323
clipboard

copy graphics to 40
clipping

controls in PV-WAVE 70
defining a rectangle for 68
definition of 67
examples 72–78
graphics output 68
keywords and system variables 70
PV-WAVE commands that use 70
suppressing 73
3D plots 101

closing
graphics output file 21

color
ambient component of 183
bar, purpose of 283, 293
common block, obtaining colors from

285
!d.n_colors system variable 287
editing interactively 282, 293
making color table with HLS or HSV

system 294
number available on graphics device

287

2 PV-WAVE User’s Guide

plot elements 286
pseudo 128
translation

table 275
true-color 128
vector graphics 278
with monochrome devices 277

color systems
definition 273
HLS 276
HSV 276
RGB 274

color tables
adding new 293
changing predefined 293
contrast, control of 135
copying 291
creating 292
discussion of 127, 277
editing 282, 293
expanding with INDGEN 280
histogram equalizing 292
HLS based system 292–293
HSV based system 292
indices

changing default 42
definition of 42, 273
displaying 294
interpretation of 43

list of 279
loading

from colors.tbl file 127
from variables 127, 278, 293
into device 127
procedures for 278, 292

lookup table 275
modifying 293
obtaining 285
reversing 285
rotating 285
stretching 285, 293
supplied with PV-WAVE 127, 278, 292
switching between devices 291
24-bit devices 130

COLOR_EDIT procedure 294
COLOR_PALETTE procedure 294
colormap

See also color tables
command files

executing at startup 10, 27

command recall
using arrow keys 33
with INFO command 16

common block
colors 285

CONE function 181
conformal map projection 298
CONGRID function 123
connecting data points with lines 52
.CON 12, 26
.CONTINUE command 13
continuing program execution 12, 26
contour plots

add to map 308
algorithms used to draw 83
closing open contours with arrays 95
combining with

images 87
surfaces 110

enhancing 85
examples 82, 84–86, 89, 91
filled

on map 309
with color 94

follow method algorithm 84
labeling 91
levels

color of 94
scattered data 82
smoothing 93
sparse data 82
2D arrays 82

CONTOUR procedure 81
CONTOUR2 procedure 81
contrast, control 134
control characters, list of those that stop or

interrupt PV-WAVE 26
Control-\, aborting PV-WAVE 12
Control-Break

aborting PV-WAVE 26
interrupting PV-WAVE 26

Control-C
interrupting PV-WAVE 12, 26
using to abort plots 46

Control-D, exiting PV-WAVE on a VMS
system 11

Control-Y 13
Control-Z

on UNIX 11
on VMS 11

 3

CONV_FROM_RECT function 178
CONV_TO_RECT function 178
converting

3D to 2D coordinates 106
between graphics coordinate systems 44,

178
data to

date/time 203, 207
date/time variables to strings for tables

252
CONVOL function 138, 141
convolution 138
coordinate systems

constructing 3D 107
converting from one to another 44, 178
graphics 43, 45
homogeneous 99
polar 66
reading the cursor position 78
right-handed 99
screen display 120

copying
graphics, from window to clipboard 40

CREATE_HOLIDAYS procedure 215
CREATE_WEEKENDS procedure 216
cubic splines

to smooth contours 93
cursor

controlling position of with TVCRS 125
in mapping applications 319
positioning text with 79

CURSOR procedure 78
customizing PV-WAVE

when changes are remembered 26
CYLINDER function 181

D
data

coordinate systems 43
logarithmic scaling 63
map 299
overplotting 49

date/time data
conversion routines 207
converting to

strings for tables 252
description of 201
empty variables, creating 205
excluding days 215

holidays 215
in tables 251
Julian day 204, 253
plotting 217–226, 239
reading into PV-WAVE 206
recalc flag 205
structure 204
writing to a file 228

DAY_NAME function 231
DAY_OF_WEEK function 231
DAY_OF_YEAR function 232
DC_READ_FIXED function 225
DC_READ_FREE function 219–222
dde

runtime mode, starting 27
decal, definition of 184–185
demonstration

files 8
gallery 6, 34

density function, calculating histogram
292

device coordinate system 43, 45
DEVICE procedure 20
diffuse component of color, for RENDER

function 182
display

reading from 124
DIST function 142
distance, calculating on a map 305
distortion, linear 148
dithering, different methods compared

129
!d.n_colors system variable 287
documentation, online

manuals online 3
optional products 5
PV-WAVE Gallery 6
starting from OS prompt 3
starting from WAVE> prompt 3
using 4

DT_ADD function 213
DT_COMPRESS function 217
DT_DURATION function 214
DT_PRINT procedure 232, 233
DT_SUBTRACT function 214
DT_TO_SEC function 230
DT_TO_STR procedure 228
DT_TO_VAR procedure 229
dynamic

memory 16, 35

4 PV-WAVE User’s Guide

Dynamic Data Exchange. See dde

E
edge enhancement

methods 139–141
EMF files

copy to clipboard 40
paste from clipboard 40

empty output buffer 26
ending PV-WAVE sessions 25
equal area projection 298
equidistant map projection 298
executive commands

.CON 12, 26
exiting

PV-WAVE 11
unconditionally 25

exporting graphics, using the clipboard 40

F
F1 function key (Windows) 34
F2 function key (Windows) 34
fast Fourier transform

applied to images 141
spectrum, 2D 144

FAST_GRID2 function 176
FAST_GRID3 function 176
FAST_GRID4 function 177
filling. See polygon fill
filters

bandpass 142
Butterworth 143
exponential high- or lowpass 143
highpass 139, 142, 143
image 141–142
lowpass 142, 143
Roberts 139
Sobel 139
2D 142

Floyd-Steinberg dithering 130
flushing

output buffer 26
fonts

See also annotation
additional formatting commands 265
changing 262
choosing 259
default PostScript 265
formatting commands 261

hardware vs. software 259
positioning commands 269
selection commands 262
text rotation 260
3D transformations 259
using 261

formatted data
commands for software fonts 261

frequency domain techniques 141
function keys

equating to character strings
(Windows) 34

functions
stopping execution 26

G
gallery demonstration, using 6, 34
geometric transformations 146–150
Gouraud shading 115
graphics

reading, from clipboard 40
graphics window

definition 29
menu, shown in figure 38
shown in figure 29

gray levels
dithering 129
transformations 132

great circle, plotting a 304
GRID_2D function 176
GRID_3D function 176
GRID_4D function 177
GRID_SPHERE function 177
gridding

4D 177
definition of 176
demonstration programs 170
over a plot 60

GROUP_BY function 235

H
hardware fonts. See fonts
help, online

Hyperhelp 1
introduced 29
printing from Hyperhelp 2
session information 16, 35
UNIX and OpenVMS platforms 1
Windows 3

 5

helper application, PV-WAVE as a 321, 322
Hershey fonts 259
highpass filters 139, 142, 143
HIST_EQUAL function 137
HIST_EQUAL_CT procedure 136
histogram

calculating density function 135, 292
equalization 135
mode 52

HLS procedure 292
home window

description of 28
starting the 23, 24

homogeneous coordinate systems 99
HSV procedure 292
HTML, processing files 321

I
image processing

contrast control 134–135, 293
convolution 138
dithering 129
expanding 123
frequency domain techniques 141
intensities, modifying 133
magnifying 123
polynomial warping 146
rotating 146
sharpening 139
shrinking 123
special effects 292
warping 146
write mask 292

images
combining with surface and contour plots

111
definition of 119
geometric transformations 146
interpolation of 147
orientation of 120
overlaying with contour plots 87–90
placing the cursor in 125
position of on screen 121
reading

from display device 124
routines used to display 119
scaling to bytes 134
size of display 121
transformation matrices 99

true-color 127–128
under maps 306

INDGEN function 280
INFO procedure

quick way to invoke 34
Internet, PV-WAVE on the 321
interpolated shading 115
interrupt, from keyboard 26
Intranet, PV-WAVE on the 321
iso-surfaces

examples 193–197

J
JUL_TO_DT function 210, 226
Julian day 253

description of 204

K
keyboard

command recall, using 16
defining keys (Windows) 34
interrupt 12, 26

keywords
relationship to system variables 15,

33, 42
specifying in a command 15, 32

Korn shell 9

L
Lambertian shading components 183
learning PV-WAVE

online Help 1
tutorial 1

least square
curve fitting 53

libraries
PV-WAVE Users’ 32
Standard 32

light source
lighting model, rendering 181
shading 115

line
connecting symbols with 53
drawing 107
fitting, example using POLY_FIT 53

linear
distortion 148

LOAD_HOLIDAYS procedure 216

6 PV-WAVE User’s Guide

LOAD_WEEKENDS procedure 216, 217
LOADCT procedure 120, 127, 278, 292
loading

PV-WAVE save session file 36
See also opening files

logarithmic
scaling 63

lowpass filters 138, 142–144

M
magnifying images 123
manuals online 3
map datasets

accessing other 315
ASCII format 316
built-in 315
definition of 299
National Imagery and Mapping Agency

(NIMA) 299
reading 300, 315–317
subsetting 303, 312
user-defined 316
USGS Digital Line Graph 299
USGS Names 299
World Databank II 299

map projections
defining your own 318
PV-WAVE 298, 302
specifying 302

maps
See also map datasets; map projections
annotating 305
calculating distances on 305
contours

adding 308
defining a projection 318–319
demonstration files 296
draw straight lines on 305
example programs list 317
filling 301
great circle, plotting 304
image, adding under 306
introduction 296
keywords used to create 301
plotting 300
projections 297
selecting attributes 303
subsetting 303
velocity vectors, adding to 309

zoom in 304
marker symbols

for data points 53
force histogram mode 52
user-defined 54

masking
unsharp 140

mathematical morphology 151
matrix

See also linear algebra;
transformation matrices

mean
smoothing 138

median
smoothing 138, 139

mesh surfaces, drawing 96, 187–189
minimizing images 123
MODIFYCT procedure 293
monochrome

devices 129
dithering 129

MONTH_NAME function 232
morphology, mathematical 151
mouse

two-button mouse 294
multiple plots 61

N
National Imagery and Mapping Agency

(NIMA) 299
nearest neighbor method 147
normal coordinate systems 44–45

O
online documentation. See

documentation, online 3
OpenGL 153
OPENURL procedure 322
OpenVMS operating system. See VMS

operating system
OPLOT procedure 45, 49, 50, 226
options

font 26
when saved 26

ORDER_BY function 235
overplotting. See plotting

 7

P
PALETTE procedure 294
pixels

reading from the display 124
scalable 122

PLOT_IO procedure 63
PLOT_OI procedure 45
PLOT_OO procedure 61
plotting

3D data 81, 99, 113
See also annotation; axes; clipping; color;

contour plots; coordinate systems;
surface plot; tick marks

axes, exchange of 111
bar graphs 56
combining images and contours 88–90
converting from 3D to 2D coordinates 106
coordinate systems 43
data window 64
date/time data 217–226
histogram 52
input from the cursor 78
logarithmic scaling 63
multiple plots 61
overplotting 49
polar

plots 66
polygons

filling 55
position of plot in window 64
region 64
scaling XY 47
surfaces 96
symbols

creating new 54
specifying 53

table data 255
transformation matrices 99

!p.multi system variable 61
polar

coordinates 66
plots 66

POLY_2D function 90, 146, 150
POLY_C_CONV function 177
POLY_COUNT function 177
POLY_DEV function 179
POLY_FIT function 53
POLY_MERGE procedure 177
POLY_NORM function 178

POLY_PLOT procedure 180
POLY_SPHERE procedure 175
POLY_SURF procedure 175
POLY_TRANS function 177, 178
POLYCONTOUR procedure 94, 95
POLYFILL procedure 55
polygon fill

example of 55
polygons

generating 173
manipulating 177
meshes 187–188
rendering 155, 164, 169, 180
vertex lists 173

polylines 107
POLYSHADE function 180
POLYWARP procedure 150
printing

graphics output 18–21
help cards (Windows) 38
tables 254

program
stopping execution 26

PSEUDO procedure 293
pseudo-color

compared to true-color 127
images, PostScript 128

PV-WAVE session
exiting 11, 25
files are overwritten 36
getting information about 16, 35
restoring 18, 36
saving 17

Q
quadric animation example 190
QUERY_TABLE function 235
quitting PV-WAVE 10, 27

R
raster

images 119
ray tracing

description of 163, 180–186
READ_XBM Function 322
reading

cursor position 78
date/time data 206
from the display device 124

8 PV-WAVE User’s Guide

REBIN function 90, 123
rectangular surfaces 175
Remote Procedure Call. See RPC
remote server 323
RENDER function 180, 186
rendering

See also image processing; ray tracing
color, defining 182
cone objects 181
cylinder objects 181
defining material properties of objects 184
example of 187–199
images, displaying 200
iso-surfaces 197
lighting model 181
mesh objects 181
polygons 169, 180
process of 171
ray-traced objects 180
setting up data for viewing 179
sphere objects 181
standard techniques 179

Chapter 7
Rendering Techniques 153

transmission component 183
volumes 168–169, 180, 181
VTK 153

RESTORE procedure 18, 36–37
RGB

color system 274
right-handed coordinate system 99
ROBERTS function 139
ROTATE function 120, 146
rotating

current color table 285
data 100
text 260

runtime mode
starting PV-WAVE in 25

S
sampled images 119
SAVE procedure 17
saving

PV-WAVE session 17
scalable pixels 122
SCALE3D procedure 109
scaling

data 100

input images with BYTSCL function
134

logarithmic 63
plots 47
Y axis with YNozero 47

SEC_TO_DT function 210
servers

remote 323
Web 323

SET_SHADING procedure 116
SET_VIEW3D procedure 179
SHADE_SURF procedure 115–117

examples 116, 117
SHADE_VOLUME procedure 176, 189
shading

constant intensity 115
examples 116–117
light source 115
methods 115
setting parameters 116
surfaces 115

SHOW3 procedure 113
SLICE_VOL function 166, 178
SMOOTH function 138
smoothing

contour plots 93
mean 138
median 138
of images 138

SOBEL function 139
SORT function 258
sorting

methods of 258
tables 246

special effects
color 291

SPHERE function 190
spheres

defining with SPHERE function 181
gridding 177
surfaces, creating 175

SQL
See also tables
description of 236

Standard Library
location of 14, 32

starting PV-WAVE
executing a command file 10, 27
from Korn shell 9
new interactive session 9

 9

OpenVMS process defaults 10
under OpenVMS 9
under UNIX 9
under Windows 95 24
under Windows NT 23

stopping PV-WAVE 11, 25
STR_TO_DT function 207–209
STRETCH procedure 135, 293
stretching the current color table 285
strings

passing to QUERY_TABLE 250
structures

date/time 204–206
tables, relation to 256–257

subsetting
See also arrays; clipping; sorting
map datasets 303, 312
tables 248

surface plot
combining with image and contour 110–

112
overlaying with contours 110
rotation

transformation matrices 100
transformation matrix 105

SURFACE procedure 81, 96–98, 105
suspending PV-WAVE 11
symbols

connecting with lines 53
marker 53–54
user-defined 54

system variables
clipping, use in 70
!d.n_colors 287
relationship to keywords 15, 33, 42
tick label formats, use in 61

T
T3D procedure 99

See also transformation matrices
tables

columns
descending sort 247
printing with titles 254
renaming 243

creating 238–241
date/time data in 251, 253
examples 237
multiple clauses in a query 251

overview of functions 235
passing variable parameters to table

functions 249
plotting 255, 256
printing with column titles 254
rearranging 242
removing duplicate rows 241
renaming columns 243
sorting 246, 247
structures, relation to 256–257
subsetting with Where clause 248
viewing structure of 239

Tcl 154
TEK_COLOR procedure 15, 33, 289,

293
Tektronix

4115 device
mimicking colors 293

terminating, PV-WAVE session 25
3D graphics. See contour plots;

rendering; surface plot;
transformation matrices

threshold
dithering 130
images 133

tick marks
controlling length of 58
extending away from the plot 58
intervals

setting number of 48
label format 60–61
linestyle 58
non-linear marks 58
number of minor marks 58

title. See annotation
TODAY function 231
transformation

geometric 146
gray level 132
matrix. See transformation matrices

transformation matrices
applied before rendering 179
created with T3D 105, 107
description of 99
keyword discussion 186
rotating data 100
scaling data 100
set up 3D view 107
storing 104
SURFACE procedure 105

10 PV-WAVE User’s Guide

translating data 100
translation table

color 275
true-color

compared to pseudo-color 127
definition 128

tutorial, PV-WAVE 1
TV procedure 43, 119
TVCRS procedure 120, 125
TVLCT procedure 120, 127, 278, 288
TVRD function 119, 124
TVSCL procedure 119, 133
24-bit color

plot colors 290
special effects 292

24-bit image data
displaying 130–132

2D plotting. See plotting

U
UNIQUE function 235
UNIX operating system

See also environment variables; operating
system

commands from within PV-WAVE 12
sending output file to printer or plotter 21

unsharp masking 140
Users’ Library

location of 14
location of in PV-WAVE 32

USERSYM procedure 54
USGS Digital Line Graph dataset 299
USGS Names database 299

V
VAR_TO_DT function 209, 218–225
vector

building tables from 240
VECTOR_FIELD3 procedure 180
vector-drawn text. See annotation
velocity vectors, plotting on a map 309
vertex lists

description of 173
VIEWER procedure 166, 179
Visualization Toolkit 153
VMS operating system

output to printer or plotter 21
process defaults, increasing 10

VOL_MARKER procedure 180

VOL_PAD function 177
VOL_REND function 180
VOL_TRANS function 178
VOLUME function 193–199
volumes

See also ray tracing; rendering
defining 181
generating 173
manipulating 177
slicing

example of 192
VRML, processing files 321
VTK 153

W
warping of images 146
Web. See World Wide Web
window

Control menu button 38
Help 29
to display graphics 29

Windows
clipboard 40
command recall 33
console window 28
control characters 26
files are overwritten 36
interrupting PV-WAVE 26
location of libraries 32
online help window 29
printing your work 37
types of PV-WAVE windows 28

World Databank II map dataset 299
World Wide Web

PV-WAVE on the 321
server 323

write mask
creating special effects 291

WRITE_XBM procedure 322
writing

date/time data 228
wvsetup (WVSETUP.COM) file 9

X
X axis. See axes
XY plots. See plotting
XYOUTS procedure 51, 107

Y
Y axis. See axes

Z
Z axis. See axes
ZOOM procedure 124
zooming

images 123
map area, use in 304

	PV-WAVE User's Guide
	Table of Contents
	Preface
	What’s in this Manual
	Conventions Used in this Manual
	Technical Support
	FAX and E-mail Inquiries
	Electronic Services

	1 - Learning PV-WAVE
	Using the Tutorial
	Using Online Help
	Using Online Help on UNIX and OpenVMS
	Help from the Command Line
	VDA Tools Help
	Printing from Online Help

	Using Online Help on Windows
	Help from the Command Line
	Help from the Program Manager/Start Menu
	VDA Tools Help

	Using Manuals Online
	The Printed Documentation Set
	The Standard PV�WAVE Documentation Set
	PV-WAVE Tutorial
	PV-WAVE User’s Guide
	PV-WAVE Programmer’s Guide
	PV-WAVE GUI Application Developer’s Guide
	PV-WAVE Reference (Volumes 1, 2, and 3)

	Documentation for Optional PV�WAVE Products
	PV-WAVE IMSL Mathematics Toolkit
	PV-WAVE IMSL Statistics Toolkit
	PV-WAVE:GTGRID
	PV-WAVE:Signal Processing Toolkit
	PV-WAVE:Image Processing Toolkit
	PV-WAVE:Database Connection
	PV-WAVE:ODBC Connection
	JWAVE

	Using the Gallery
	PV�WAVE Gallery Setup Under UNIX and OpenVMS
	�PV�WAVE Gallery Setup Under Windows

	Using the Demo Files

	2 - Getting Started: UNIX and OpenVMS
	Starting �PV�WAVE
	Starting �PV�WAVE Interactively
	Executing a Command (Batch) File at Startup

	Stopping �PV�WAVE
	Exiting �PV�WAVE
	Exiting on a UNIX System
	Exiting on an OpenVMS System

	Suspending �PV�WAVE
	Suspending PV�WAVE on a UNIX System
	Suspending PV�WAVE on an OpenVMS System

	Interrupting the Current PV�WAVE Command
	Aborting �PV�WAVE
	Aborting on a UNIX System
	Aborting on an OpenVMS System

	Entering Commands at the Command Line
	Function and Procedure Libraries
	Using Keywords to Modify Commands
	Relationship Between Keywords and System Variables

	Using Command Recall
	Getting Information about the Current Session
	Saving and Restoring Sessions
	Using the SAVE Procedure
	Saving for Future Sessions

	Using the RESTORE Procedure

	Printing Your Work
	Selecting the Output Device with SET_PLOT
	Configuring the Output Device with DEVICE
	Entering Graphics Commands for Output
	Closing the Output File
	Sending the Output File to the Printer or Plotter

	3 - Getting Started: Windows
	Starting PV-WAVE
	Under Windows NT
	Under Windows 95

	Summary of PV�WAVE Startup Commands
	Standard I/O and Error Redirection

	Stopping �PV�WAVE
	Exiting �PV�WAVE
	Interrupting the Current PV�WAVE Command
	Control Characters that Interrupt or Stop �PV�WAVE

	Executing a Command (Batch) File at Startup
	DDE Runtime Mode — wavedde
	Windows Used by PV�WAVE
	Home Window
	Console Window
	Graphics Windows
	Help Window

	Entering Commands at the Command Line
	Function and Procedure Libraries
	Using Keywords to Modify Commands
	Relationship Between Keywords and System Variables
	Using Command Recall

	Function Keys
	Assigning Commands to Function Keys

	Getting Information about the Current Session
	Saving and Restoring �PV�WAVE Sessions
	Using the RESTORE Procedure
	Things to Remember when Restoring Files

	Printing Your Work
	Printing the Contents of a Graphics Window
	Printing �PV�WAVE Help Topics
	Using the PV-WAVE Output Drivers
	Exporting Graphics to a File

	Using the Clipboard
	Copying Graphics to the Clipboard
	Pasting Graphics from the Clipboard

	4 - Displaying 2D Data
	Summary of 2D Plotting and General Graphics Routines
	Customizing Plots with Keyword Parameters
	Keyword Correspondence with System Variables
	Example of Changing the Default Color Index
	Using the Color Keyword Parameter
	Changing the !P.Color System Variable
	Interpretation of the Color Index

	Three Graphics Coordinate Systems
	Data Coordinate System
	Device Coordinate System
	Normal Coordinate System
	Coordinate System Conversion

	Drawing X Versus Y Plots
	Producing a Basic XY Plot
	Scaling the Plot Axes and Adding Titles
	Using YNozero to Scale the Y–Axis
	Adding Titles

	Specifying the Range of the Axes
	Specifying Exact Tick Intervals with XStyle = 1

	Plotting Additional Data on the Same Axes
	Plotting Date/Time Axes
	Annotating Plots
	Selecting Fonts
	Using XYOUTS to Annotate Plots

	Plotting in Histogram Mode
	Using Different Marker Symbols
	Defining Your Own Marker Symbols
	Using Color and Pattern to Highlight Plots
	Drawing Bar Charts
	Controlling Tick Marks
	Example 1: Specifying Tick Labels and Values
	Example 2: Specifying Tick Lengths
	Example 3: Specifying Tick Label Formats

	Drawing Multiple Plots on a Page
	Plotting with Logarithmic Scaling
	Specifying the Location of the Plot
	Drawing Additional Axes on Plots
	Drawing Additional Axes Example

	Drawing Polar Plots
	Clipping PV�WAVE Graphics
	Defining a Clipping Rectangle
	How is Clipping Controlled in PV�WAVE?
	Which PV�WAVE Commands Use Clipping
	Notes on the Keywords and System Variables
	Examples
	OPLOT Default Clipping
	OPLOT with NoClip Keyword
	OPLOT with Clip Keyword
	XYOUTS Default Clipping
	XYOUTS with PClip Keyword
	XYOUTS with Clip Keyword

	Getting Input from the Cursor

	5 - Displaying 3D Data
	Differences Between CONTOUR and CONTOUR2
	When to Use CONTOUR2
	When to Use CONTOUR
	When to Use either CONTOUR or CONTOUR2

	Drawing Contour Plots with the CONTOUR Procedure
	Basic Usage
	Alternative Contouring Algorithms in CONTOUR
	Cell Method
	Follow Method

	Controlling Contour Features with Keywords
	Contouring Example
	Overlaying Images and Contour Plots
	Overlaying on Devices with Scalable Pixels
	Overlaying on Devices with Fixed Pixels
	Method 1
	Method 2

	Labeling Contours
	Smoothing Contours
	Filling Contours with Color

	Drawing a Surface
	Controlling Surface Features with Keywords
	Example of Drawing a Surface

	Drawing Three-dimensional Graphics
	Overview of Homogeneous Coordinates
	PV�WAVE Uses a Right-handed Coordinate System
	Overview of Transformation Matrices
	Translating Data
	Scaling Data
	Rotating Data
	Clipping 3D Plots
	Notes on the Keywords and System Variables for 3D Clipping

	Using the T3D Procedure to Transform Data
	An Example of Transformations Created by SURFACE
	Converting from 3D to 2D Coordinates
	Establishing Your Own 3D Coordinate System
	Example of Data Transformations
	Procedure Used to Draw a House
	Commands that Perform Transformations on the House

	3D Transformations with 2D Procedures
	Combining CONTOUR and SURFACE Procedures
	Even More Complicated Transformations are Possible
	Combining Images with 3D Graphics

	Drawing Shaded Surfaces
	Alternative Shading Methods
	Setting the Shading Parameters
	Sample Shaded Surfaces

	6- Displaying Images
	What is an Image?
	Working with Images

	Image Display Routines: TV and TVSCL
	Image Orientation on the Display Screen
	Image Position on the Display Screen
	Image Size
	Examples

	Image Magnification and Reduction
	Use REBIN for Integral Multiples (or Factors) of Images
	Use CONGRID for Arbitrary Multiples (or Factors) of Images
	The ZOOM Function

	Retrieving Information from Images
	Reading Images from the Display Device
	Examples of How to Use the TVRD Function

	Not All Devices Can Read from the Display
	Using the Cursor with Images: TVCRS

	Using Color with Images
	Color Systems
	Using Color Tables to View Images
	Loading a Different Color Table
	Color Tables for Viewing Images

	Not all Color Images are True-color Images (UNIX/ OpenVMS)
	Pseudo-color Images
	True-color Images

	Displaying Images on Monochrome Devices (UNIX/ OpenVMS)
	Displaying Images on 24-bit Devices (UNIX/OpenVMS)
	Example: Read and Display a 24-bit Image-interleaved Image
	Example: Read and Display a 24-bit Image Stored in Three �Different Files

	Gray Level Transformations
	Thresholding, the Simplest Gray-level Transformation
	Thresholding using Color Table Modification

	Contrast Enhancement
	Using BYTSCL to Enhance Contrast
	Modifying Color Tables to Enhance Contrast

	Histogram Equalization
	Example of Histogram Equalization

	Image Smoothing
	The SMOOTH Function
	Median Smoothing with the MEDIAN Function

	Image Sharpening
	The ROBERTS Function
	The SOBEL Function
	Unsharp Masking Method
	The CONVOL Function

	Frequency Domain Techniques
	Filtering Images
	Displaying the Fourier Spectrum

	Geometric Transformations
	Rotating and Transposing with the ROTATE Function
	Example of ROTATE Function Usage

	Geometric Transformations with the POLY_2D Function
	Efficiency and Accuracy of Interpolation
	Correcting Linear Distortion with Control Points

	Mathematical Morphology

	7 - Rendering Techniques
	Hardware Rendering
	Introduction
	Additional Information
	Demonstration Programs
	Initializing VTK and Managing VTK Windows
	Saving the Contents of VTK Windows
	High-level Interface Routines
	Specifying Color
	Low-level Interface Routines
	vtkCOMMAND
	VTK Dataset Creation

	Simple Examples
	Example 1: Create a Surface Plot
	Example 2: Display a Cube With a Different Color at Each Vertex
	Example 3: Adding an Annotation to a Scene
	Example 4: Debugging VTK

	Software Rendering
	Demonstration Programs
	Demonstration Programs in the Examples Directory
	Ray Tracing Demonstration (Render Directory)
	SLICE_VOL Function and VIEWER Procedure Demonstrations
	Tables of Demonstration Programs

	The Basic Rendering Process
	Importing and Generating Data for Rendering
	Importing Data
	Generating Polygons and Volumes
	Vertex Lists and Polygon Lists
	Rectangular Surfaces
	Spherical Surfaces
	Three-Dimensional Volumes

	Manipulating and Converting Data
	2-, 3-, and 4-dimensional Gridding
	2D Gridding
	3D Gridding
	4D Gridding
	Spherical Gridding

	Polygon Manipulation
	Volume Manipulation
	Coordinate Conversion

	Setting Up Data for Viewing
	Rendering with Standard Techniques
	Polygon Rendering
	Volume Rendering

	Ray-tracing
	Specifying RENDER Objects
	Lighting Model
	Defining Color and Shading
	Diffuse Component
	Transmission Component
	Ambient Component

	Defining Object Material Properties
	Decals

	Setting Object and View Transformations
	Invoking RENDER
	RENDER Examples
	Example 1: Polygonal Mesh (Diffusely-shaded Polygons)
	Program Listing

	Example 2: Polygonal Mesh (Flat-shaded Polygons)
	Program Listing

	Example 3: Polygonal Mesh (Many Polygons)
	Program Listing
	Program Listing

	Example 4: Quadric Animation
	Program Listing
	Program Listing

	Example 5: Slicing a Volume
	Program Listing
	Program Listing

	Example 6: Rendering an Iso-Surface with Voxel Values
	Program Listing
	Program Listing

	Example 7: Diffuse and Partially Transparent Iso-Surfaces
	Program Listing
	Program Listing

	Example 8: Rendering Iso-Surfaces with Transformation Matrices
	Program Listing
	Program Listing

	Displaying Rendered Images

	8 - Working with Date/Time Data
	Introduction to Date/Time Data
	Reading in Your Data
	Converting the Data to the Date/Time Format
	Manipulating the Date/Time Data
	Plotting Your Data

	The Date/Time Structure
	The Julian Field
	The Recalc Field
	Creating Empty Date/Time Variables

	Reading in Your Date/Time Data
	Converting Your Data into Date/Time Data
	The STR_TO_DT Function
	Example 1
	Example 2

	The VAR_TO_DT Function
	Example

	The SEC_TO_DT Function
	Example

	The JUL_TO_DT Function
	Example

	Generating Date/Time Data
	Example 1
	Example 2

	Manipulating Date/Time Data
	Adding to a Date/Time Variable
	Example 1
	Example 2

	Subtracting from a Date/Time Variable
	Example

	Finding Elapsed Time between Two Date/Time Variables
	Example

	Excluding Days from Date/Time Variables
	CREATE_HOLIDAYS Procedure
	Example

	LOAD_HOLIDAYS Procedure
	CREATE_WEEKENDS Procedure
	Example

	LOAD_WEEKENDS Procedure
	Example

	DT_COMPRESS Function

	Creating Plots with Date/Time Data
	Example 1: Plotting Seconds
	Example 2: Plotting Minutes
	Example 3: Plotting Hourly Data
	Example 4: Plotting Daily Sales Data
	Example 5: Plotting Sales Per Week
	Example 6: Plotting Monthly Sales
	Example 7: Plotting Quarterly Sales
	Example 8: Plotting Yearly Sales
	Example 9: Plotting Yearly Sales with the XType Keyword

	Writing Date/Time Data to a File
	Using DC_WRITE Functions
	Using Conversion Routines
	DT_TO_STR Procedure
	Example

	DT_TO_VAR Procedure
	Example

	DT_TO_SEC Function
	Example

	Miscellaneous Date/Time Utility Functions
	The TODAY Function
	Example

	The DAY_NAME Function
	Example

	The DAY_OF_WEEK Function
	Example

	The MONTH_NAME Function
	Example

	The DAY_OF_YEAR Function
	Example

	The DT_PRINT Procedure

	9 - Creating and Querying Tables
	What are the Table Functions?
	Table Functions and Structured Query Language (SQL)
	A Quick Overview of the Table Functions
	Creating a Table
	Example 1: Building a Table
	Using INFO to View the Table Structure
	Only Vectors can be Used in BUILD_TABLE

	Example 2: Building a Different Table with the Same Data
	Example 3: Renaming Columns

	Querying a Table
	Restoring a Sample Table
	The QUERY_TABLE Function
	Rearranging a Table
	Renaming Columns
	Using the Distinct Qualifier

	Summarizing Data with Group By
	Calculation Functions Used with Group By
	Using More than One Calculation Function
	Multiple Groupings

	Sorting Data with Order By
	Sorting in Descending Order

	Subsetting a Table with the Where Clause
	Using Strings in Where Clauses

	Passing Variable Parameters into Table Functions
	Using the In Operator
	Combining Multiple Clauses in a Query
	Example

	Using Date/Time Data in Tables
	Read the Date Data into a Date/Time Variable
	Two Methods of Handling Date/Time Data in Tables
	Method 1: Convert the Date/Time Data to Strings
	Subsetting the Table
	Plotting the Table with a Date/Time Axis

	Method 2: Create a Table that Includes the Date/Time Variable
	Subsetting the Table
	Plotting the Table with a Date/Time Axis

	Formatting and Printing Tables
	Printing the Table without Column Titles
	Printing the Table with Column Titles

	Plotting Table Data
	Tables and Structures
	Returning Indices of a Subsetted Table
	Other Methods of Subsetting and Sorting Variables

	10 - Using Fonts
	Software vs. Hardware Fonts: How to Choose
	Appearance of Text
	3D Transformations
	Text Rotation
	Portability of Text
	Speed of Plotting
	Localized Fonts

	Using Software Fonts
	Software Font Formatting Commands
	Changing Software Fonts

	Using Hardware Fonts
	Hardware Font Formatting Commands
	Using PostScript Formatting Commands
	Additional Text Formatting Commands
	String Resource File for Font Mappings
	Format of the Fontmap String Resource File
	Location of the Fontmap String Resource File
	Using the WAVE_FONTMAP_PATH Environment Variable

	Text Formatting Examples
	Example 1: Basic Text Formatting
	Example 2: Changing the Position of Text
	Example 3: Multiple Fonts within a Single String
	Detailed Discussion

	Example 4: Annotating a Plot

	11- Using Color in Graphics Windows
	Understanding Color Systems
	Color System Overview
	The RGB Color System
	How RGB Color Triples Map into Pixels

	The HSV and HLS Color Systems
	The HLS Color System
	The HSV Color System

	Using Color to Enhance Visual Data Analysis
	Experimenting with Different Color Tables
	Number of Colors in the Color Table Under UNIX/OpenVMS
	Loading a Predefined Color Table: LOADCT
	Loading Your Own Color Tables: TVLCT
	Example — Modifying Color Tables from the Command Line

	Modifying the Color Tables
	Modifying the Predefined Color Tables
	Modifying Color Tables Using Widget-based Utility Tools
	Shifting the Color Table to the Left or Right
	Shifting Colors from the PV�WAVE Prompt
	Shifting Colors Using the Utility Widget WgCbarTool

	Smoothing the Color Transitions in a Color Table
	Stretching the Color Table
	Stretching Colors from the PV�WAVE Prompt
	Stretching Colors Using the Utility Widget WgCtTool

	Retrieving Information About the Current Color Table

	Controlling Plot Colors
	Default Plot Colors
	Determining the Number of Available Plot Colors
	Example — Creating a Simple Color Table to Control Plot Colors
	Using the TEK_COLOR Command to Control Plot Colors
	Example

	Specifying Plot Colors on a 24-bit Display (UNIX/OpenVMS)

	Device-specific Methods for Using Color
	Color Tables — Switching Between Devices
	Combining Colors to Create Special Effects

	Summary of Color Table Procedures
	Basic Color Table Procedures
	Interactive Color Table Procedures
	Interactive (Wave Widgets) Color Table Procedures

	Interactive (Generic) Color Table Procedures

	12 - Mapping with PV-WAVE
	Introduction
	Using Map Projections and Datasets
	What Are Map Projections?
	Types of Projections
	Map Projections Available in PV�WAVE
	What Are Map Datasets?
	The World Databank II Dataset
	The USGS Digital Line Graph Dataset
	The USGS Name Database

	Reading Other Map Datasets Into PV-WAVE

	Creating and Customizing Maps
	Plotting a World Map
	Specifying a Map Projection
	Subsetting the Map Dataset
	Selecting Map Attributes

	Specifying the Map Limits
	Using Range Keyword
	Using Zoom and Center

	Plotting Great Circles, Straight Lines, and Text
	Drawing Great Circles
	Drawing Arbitrary Straight Lines
	Calculating Distances
	Adding Text to Maps
	Example

	Adding an Image Under the Map
	Adding Contour Lines
	Adding Vector Lines
	Creating Filled Maps

	How to Optimize Your Mapping Application
	Subsetting Data with MAP Procedure Keywords
	Subsetting with the Select Keyword
	Subsetting with Range, Zoom, and Center Keywords
	Subsetting with the Resolution Keyword

	Use File_Path and Read_Path Keywords to Avoid Re-reading Data
	Creating a Basemap Image
	Optimized Data Reading

	Accessing Other Map Datasets
	Writing a Procedure to Read a Map Dataset
	Example Programs Are Provided

	Defining Your Own Projections
	Example

	Creating Interactive Map Applications

	13 - PV WAVE on the World Wide Web
	Standard Library Web-Enabling Routines
	PV-WAVE as a Helper Application
	Using PV-WAVE Remotely with CGI

	Index

